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1. Introduction

The particle swarm optimiser (PSO), introduced by Kennedy and Eberhart [13, 8], is a population based

optimisation algorithm, originally derived from a simplified sociological model. The members of the

population, calledparticles, represent potential solutions to the optimisation task athand. Each particle

has a currentposition, apersonal best position, and avelocityassociated with it. The particles then move

through the search space under the influence of the attractive forces of previously discovered promising

solutions, as well as the influence of their own inertia.

The velocity update of each particle depends on: 1) the distance that the particle is from the best

solution found by the swarm, called theglobal best position, and 2) the distance that the particle is from

its personal best position, defined as the best solution that the particle has personally come across during

its lifetime. Particles start from random positions in the search space, so that initially some particles will

have large velocities, allowing them to explore a large region of the search space. Over time, particles

move closer together, eventually converging on a single position.

The ability of the PSO to find the global optima of functions has mainly been studied experimen-

tally (refer to the list of papers at http://www.swarmintelligence.org/). Claims like “The particle swarm

paradigm found the global optimum each run,...” have been made regarding Schaffer’sf6 function [13].

These claims may give the impression that the PSO is a global optimisation method, with only empir-

ical evidence to back up such claims. Theoretical analyses have been done to show that, under certain

conditions, particles converge to a stable point [7, 1, 26, 29, 4, 19]. While existing research proved that

particles converge to a stable point, nothing has been said about the optimality of this point. A formal

analysis is presented in this paper to prove that this stablepoint is not necessarily a local optimum. It

is also shown that a flaw in the original PSO causes the particles to stagnate. A variation of the PSO

is described to address this flaw, and it is proven that the adapted PSO has guaranteed convergence to a

local optimum, but not a global optimum. The PSO is then further adapted to provide algorithms with

global convergence.

Section 2 provides an overview of the original PSO. The main findings of published theoretical

studies are summarised in Section 3. Criteria for convergence, as applicable to global and local stochastic
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search algorithms are discussed in Section 4. Section 5 provides a novel proof that the PSO is not a local

or global minimiser. The flaw in the original PSO algorithm, described analytically here for the first

time, is discussed in Section 6, and a PSO variation is presented with guaranteed convergence to a local

optimum. Section 7 discusses the global convergence properties of the PSO, followed by the description

of globally convergent PSO variants in Section 8. Experimental results are summarised in Section 9.

2. Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a stochastic optimisation approach which maintains a swarm of

candidate solutions, referred to asparticles [13, 8]. Particles are “flown” through ann-dimensional

search space, with each particle being attracted towards the best solution found by the swarm and the

best solution found by the particle. The position,xi, of the i-th particle is adjusted by a stochastic

velocity vi which depends on the distance that the particle is from its own best solution and that of the

swarm. For the original PSO [13, 8],

vij,t+1 = vij,t + φ1j,t(yij,t − xij,t) + φ2j,t(ŷj,t − xij,t) (1)

xij,t+1 = xij,t + vij,t+1 (2)

for i ∈ Z, 1 ≤ i ≤ h andj ∈ Z, 1 ≤ j ≤ n, where:

φ1j,t = c1r1j,t andφ2j,t = c2r2j,t

h is the total number of particles in the swarm

n is the dimension of the problem, i.e., the number of parameters of the function being optimised

c1 andc2 are acceleration coefficients

r1j,t, r2j,t ∼ U(0, 1)

xi,t is the position of particlei at time stept
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vi,t is the velocity of particlei at time stept

yi,t is the personal best solution of particlei, up to time stept

ŷt is the best position found by the swarm, up to time stept.

In Equation (1) the social component,ŷt, represents the best solution found by the swarm. There are

variations of the original PSO in which the global best particle position,ŷt, is replaced by aneighbour-

hood bestposition which is dependent on the neighbourhood to which the particle belongs, and is thus

denoted̂yi,t. This neighbourhood is usually defined in terms of the particle’s index numberi, rather than

a Euclidean-distance based neighbourhood.

Different neighborhood topologies can be used to constrictthe information flow between particles.

A number of neighbourhood topologies have been investigated [12, 15, 14, 11], of which the star, ring,

and Von Neumann topologies have shown to be the most popular.This paper concentrates on the star

topology where the neighbourhood of each particle is the entire swarm, with the resulting PSO algorithm

referred to as thegbestPSO.

ThegbestPSO algorithm is summarised in Figure 1.

1. Create and initialise an-dimensional swarm,P

2. While stopping condition is not true

(a) For each particlei ∈ Z, 1 ≤ i ≤ h
i. If (f(P.xi) < f(P.yi)) thenP.yi = P.xi

ii. If ( f(P.yi) < f(P.ŷ)) thenP.ŷ = P.yi

(b) For each particlei ∈ Z, 1 ≤ i ≤ h
i. update the velocity using equation (1)

ii. update the position using equation (2)

Figure 1. The OriginalgbestPSO.

The remainder of this section summarises problems experienced with the original version of the PSO,

and some early variations to address these problems.
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2.1. Velocity Clamping

Initial PSO studies usedc1 = c2 = 2.0. Although good results have been obtained, it was observed that

velocities quickly exploded to large values. To combat thiseffect, it was proposed that each component

of the velocity should be clamped [11]. Later studies found that the velocity clamping can be avoided by

using a constriction coefficient [7] .

2.2. Inertia Weight

The inertia weight was introduced by Shi and Eberhart to restrict divergent behaviour [21, 10]. The

inertia weight,w, controls the momentum of the particle by weighting the contribution of the previous

velocity, controlling how much the previous flight direction will influence the new velocity. The velocity

equation becomes

vij,t+1 = wvij,t + φ1j,t(yij,t − xij,t) + φ2j,t(ŷj,t − xij,t) (3)

Initial empirical studies of PSO with inertia have shown that the value ofw is critical in ensuring

convergent behaviour [22, 9]. Forw ≥ 1, velocities increase over time causing divergent behaviour,

so that particles fail to change direction in order to move back towards promising areas. Forw < 1,

particles decelerate until their velocities reach zero, provided that2w > (c1 + c2)−2, as shown in [4, 1].

Empirical results have shown that a constant inertia ofw = 0.7298 and acceleration coefficients with

c1 = c2 = 1.49618 provide good convergent behaviour [9]. While static inertia values have been used

successfully, adaptive inertia values have also shown to lead to convergent behaviour [25, 30, 6, 23, 27].

3. Particle Trajectories

Early published theoretical analyses of the PSO have concentrated on analyzing the behavior of particles

by studying particle trajectories. Ozcan and Mohan concluded from their studies that particle trajectories

follow periodic sinusoidal waves [16, 17].

Clerc and Kennedy provided a theoretical analysis of particle trajectories to ensure convergence to a
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stable point [7],

p =
φ1y + φ2ŷ

φ1 + φ2
(4)

The main result of Clerc’s work is the introduction of the constriction coefficient and different classes

of constriction models. The objective of this theoretically derived constriction coefficient is to prevent

the velocity from growing out of bounds, with the advantage that, theoretically, velocity clamping is no

longer required. As a result of this study, the velocity equation changes to [5, 7]

vij,t+1 = χ[vij,t + φ1j,t(yij,t − xij,t) + φ2j,t(ŷij,t − xij,t)] (5)

whereχ is the constriction coefficient calculated as

χ =
2κ

|2− φ−
√

φ2 − 4φ|
(6)

with φ = φ1 + φ2 ≥ 4 andκ ∈ [0, 1]. The constantκ controls the rate of convergence. Forκ ≈ 0,

rapid convergence to a stable point is obtained, while aκ ≈ 1 results in slow convergence. The reader is

referred to [7] for a more detailed derivation of the constriction coefficient and models.

Van den Bergh and Engelbrecht extended the analysis of a simple deterministic PSO system to also

include the inertia term [1, 4]. This was also independentlydone by Trelea [26]. The analysis indepen-

dently arrived at the conclusion that particles converge tothe point

(1− a)y + aŷ (7)

wherea = c2
c1+c2

∈ [0, 1]. The same result has been derived in [26, 29].

If {xt}+∞

t=0 denotes the sequence of positions for a specific particle, then all that the current theoretical

analyses have shown is that

lim
t→+∞

xt = (1− a)y + aŷ (8)

From this, nothing can be inferred about the optimality of the point(1− a)y + aŷ.
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The rest of this paper is devoted to investigating whether the original PSO converges to a local

minimum. That is, to show whether the sequence{xt}+∞

t=0 converges tox∗

B in regionB ⊂ S, whereS is

the feasible space, i.e., if

lim
t→+∞

xt = x
∗

B (9)

wheref(x∗

B) ≤ f(x), for all x ∈ B. It is also shown that, for the original PSO,

P

(

lim
t→+∞

xt 6= x
∗

)

> 0 (10)

wheref(x∗) < f(x), for all x 6= x∗.

4. General Conditions for Convergence

The stochastic nature of the particle swarm optimiser makesit more difficult to prove (or disprove)

properties like global convergence. Solis and Wets have studied the convergence of stochastic search al-

gorithms, most notably that of pure random search algorithms, providing criteria under which algorithms

can be considered to be global search algorithms, or merely local search algorithms [24]. This paper uses

the definitions from [24] to study the convergence characteristics of the PSO. For convenience, some of

these definitions are reproduced below.

4.1. Simple Random Search

The convergence conditions are based on the following problem and the conceptual algorithm described

in Section 4.2:

Problem 1. Given a measurable functionf : R
n → R andS ⊆ R

n. The objective is to find a point

x ∈ S which minimisesf onS.

This provides a definition of what a global optimiser must produce as output, given the functionf

and the search spaceS.
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4.2. Conditions for Local Convergence

It is sufficient to show that a random search algorithm will atleast converge to a local minimum if the

algorithm satisfies thealgorithm conditionand theconvergence condition. The algorithm in Figure 2

serves as a conceptual simple random search algorithm.

1. Start with an initial solution,z0 ∈ S, and sett = 0.

2. Generate a vectorξt from R
n, usingµt as probability measure.

3. Setzt+1 = D(zt, ξt), chooseµt+1, sett := t+ 1, return to step 2.

Figure 2. Simple Random Search Algorithm.

Referring to Figure 2,D is a mapping that combines the new sample,ξt, with the current solution,

zt. The algorithm condition, presented next, stipulates thatthe new solution suggested byD is to be no

worse than the current solution.

Algorithm condition: The mappingD : S × R
n → S should satisfyf(D(x, ξ)) ≤ f(x) and if ξ ∈ S,

thenf(D(x, ξ)) ≤ f(ξ).

Let Mt be the support of the probability measureµt. That is,Mt is the smallest closed subset of

R
n with measure 1 underµt. Almost all random search algorithms are adaptive, withµt depending on

the previous solutions,x0, . . . ,xt−1 generated by the algorithm. Theµt are thus viewed as conditioned

probability measures. Letm be the Lebesgue measure of a set. For a local search method, the µt with

bounded supportMt have, for all except a possibly finitet,m(S ∩Mt) < m(S).

To avoid searching for an element in a set of null measure, thesearch will be for the essential infimum

of f . The algorithm will thus be said to have found a solution if itis able to generate a point in the

optimality region, Rǫ, defined as

Rǫ = {z ∈ S | f (z) < ψ + ǫ} (11)
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whereψ denotes the essential infimum off onS, andǫ > 0.

Convergence condition: Sufficient condition for convergence to at least a local minimum: For any

xt ∈ S there exists aγ > 0 and an0 < η ≤ 1 such that

µt(dist(xt+1, Rǫ) ≤ dist(xt, Rǫ)− γ or xt ∈ Rǫ) ≥ η (12)

Therefore, an algorithm is a local optimisation algorithm if a non-zeroη can be found such that at every

step the algorithm can movex closer to the optimality region by at least distanceγ, orx is already in the

optimality region with a probability greater than or equal to η.

Theorem 4.1. Local Search: Assume thatf is a measurable function,S is a measurable subset ofR
n

and both the algorithm and the convergence condition for local search are satisfied. Let{xt}∞t=0 be a

sequence generated by the algorithm,D. Then,

lim
t→∞

P (xt ∈ Rǫ) = 1 (13)

The proof of this theorem can be found in [24].

4.3. Conditions for Global Convergence

In the case of a global search algorithm, the following condition is sufficient to prove convergence to a

global minimum:

Convergence condition: Sufficient condition for convergence to a global minimum: For any (Borel)

subsetA of S withm(A) > 0,
∞
∏

t=0

(1− µt(A)) = 0 (14)

whereµt(A) is the probability ofA being generated byµt.

This convergence condition means that for any subsetA of S with positive measurem, the probability
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of repeatedly missing the setA using random samples (e.g., theξt), must be zero.

Theorem 4.2. Global Search: Assume thatf is a measurable function,S is a measurable subset ofR
n,

and the algorithm condition and convergence condition for global search are satisfied. If{xt}+∞

t=0 is a

sequence generated by the algorithm,D, then

lim
t→+∞

P (xt ∈ Rǫ) = 1 (15)

The proof of this theorem can be found in [24].

5. Local Convergence of PSO

This section tests the hypothesis that the basic PSO is a local optimiser. The proof first considers uni-

modal optimisation problems. The objective of the proof is to show whether the basic PSO satisfies both

the algorithm and convergence conditions as given in Section 4.2.

5.1. Unimodal Optimisation Problems

Let x0, defined as

x0 = argmax
xi

{f(xi)}, i ∈ Z, 1 ≤ i ≤ h, (16)

be an initial position which represents the worst particle in the swarm. Note that minimisation problems

are considered for which the worst particle yields the largest f value of all particles in the swarm. Define

the compact set,

L0 = {x ∈ S : f(x) ≤ f(x0)} (17)

to be the set of all particles withf values smaller than or equal to that of the worst particle position, x0.

From the velocity and position equations (1) and (2), functionD (as used in the algorithm condition) is
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defined for the PSO as

D(ŷt,xi,t) =















ŷt if f(g(xi,t)) ≥ f(ŷt)

g(xi,t) if f(g(xi,t)) < f(ŷt)

(18)

whereg(xi,t) denotes the application ofg, which is the function performing the PSO updates, defined in

Equation (19).

The definition ofD in equation (18) satisfies the algorithm condition, since the sequence{f(ŷt)}Tt=0

is monotonic by definition. This sequence represents the best positions amongst all the positions that all

the particles visited up to time stepT .

This proof views the computation of the value ofxi,t+1 as the successive application of three func-

tionsg1,g2 andg3. Each function adds a term to the previous result. That is,

xi,t+1 = g(xi,t) = g1(xi,t) + g2(xi,t) + g3(xi,t) (19)

where

g1(xi,t) = xi,t + wvi,t (20)

and

g2(xi,t)j = c1r1j,t(yij,t − xij,t), j ∈ Z, 1 ≤ j ≤ n (21)

g3(xi,t)j = c2r2j,t(ŷj,t − xij,t), j ∈ Z, 1 ≤ j ≤ n (22)

wheregk(xi,t)j denotes thej-th dimension of the vector functiongk.

Now, from the definition of the compact setL0 (refer to equation (17)), and the assumption that all

the particles are initially inL0,

yi,0,xi,0 ∈ L0 (23)

and therefore also,̂y0 ∈ L0. Let gN (xi,t) denoteN successive applications ofg on xi,t. The particle
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will follow a convergent trajectory under the following conditions:

Convergent parameter region: Letφ1 = c1r1 andφ2 = c2r2, and let

λ1 =
1 + w − φ1 − φ2 + γ

2
(24)

λ2 =
1 + w − φ1 − φ2 − γ

2
(25)

with

γ =
√

(1 + w − φ1 − φ2)2 − 4w (26)

For all 0 < w < 1 and0 < φ1, φ2 < 2, if

w >
(φ1 + φ2)

2
− 1,

then

max{‖λ1‖, ‖λ2‖} < 1.

For a detailed discussion of this convergent parameter region, see [4, 1]. Recently, Poli pointed out that

this region only guaranteesorder-1 convergence, that is, convergence of the meanE[xt] [19]. Poli has

shown that the region that offersorder-2stability, that is, the region for which the standard deviation of

xt tends to zero, is a large subset of the convergent region specified above. In particular, the common

choice ofc1 = c2 = 1.4961798 andw = 0.729844 falls within the order-2 stability region. In addition

to correct parameter choices, Poli has further shown that order-2 stability of the stochastic PSO requires

thatyi,t = ŷt. This additional constraint will be revisited after Lemma 5.3 below.

Lemma 5.1. For all w, φ1 = c1r1 andφ2 = c2r2 falling inside the convergent parameter region, there

exists a finiteN and a positiveǫ such that, for allk ≥ N ,

||gk(xi,t)− g
k+1(xi,t)|| < ǫ



F. van den Bergh, A.P. Engelbrecht / Particle Swarm Optimiser Convergence Proof 13

Proof: The trajectories of the particles will now be considered fora single particle only, thus the

particle subscript will be omitted. Furthermore, the individual dimensions are independent, thus a one-

dimensional notation will be used here. In [4, 1] it was shownthat the deterministic trajectory of a

particle is described by

xt = k1 + k2λ
t
1 + k3λ

t
2 (27)

where

k1 =
φ1y + φ2ŷ

φ1 + φ2

k2 =
λ2(x0 − x1)− x1 + x2

γ(λ1 − 1)

k3 =
λ1(x1 − x0) + x1 − x2

γ(λ2 − 1)

andx0 = x(0), x1 = x(1), andx2 = (1 + w − φ1 − φ2)x1 − wx0 + φ1y + φ2ŷ.

From equation (2),

xt+1 − xt = vt+1 (28)

Therefore,

vN+1 = (xN+1 − xN )

= k1 + k2λ
N+1
1 + k3λ

N+1
2 − (k1 + k2λ

N
1 + k3λ

N
2 )

= (k2λ
N
1 (λ1 − 1) + k3λ

N
2 (λ2 − 1))

(29)

Note thatmax{||λ1||, ||λ2||} < 1, so thatlimN→+∞ λN
1 = 0 andlimN→+∞ λN

2 = 0, which implies that

there exists a finiteN such that

(k2λ
N
1 (λ1 − 1) + k3λ

N
2 (λ2 − 1)) < ǫ′ (30)



14 F. van den Bergh, A.P. Engelbrecht / Particle Swarm Optimiser Convergence Proof

for anyǫ′ > 0. Note that this holds for every dimension of the vectorv, thus

‖gk(xi,t)− g
k+1(xi,t)‖ = ‖vt+1‖ < ǫ, ∀k ≥ N

This is sufficient to show that the particles will stop movingin the deterministic version of the PSO. The

next two lemmas indicate where the particles will come to rest.

Lemma 5.2. The global best particle will converge onto the positionŷ.

Proof: Let τ represent the index of the global best particle. Thenŷ , yτ . From Equation (27) it is

clear that

lim
t→+∞

xt = k1 =
φ1y + φ2ŷ

φ1 + φ2
(31)

This holds for each dimension ofxt, so that

lim
t→+∞

xτ,t =
φ1yτ + φ2ŷ

φ1 + φ2
= ŷ (32)

This result applies directly to the deterministic version of the PSO. Using the recent discoveries of Poli

[19], this result can directly be extended to the stochasticcase, becauseyτ = ŷ. This result will now be

extended to the other particles.

Lemma 5.3. All particles1 ≤ i ≤ h will converge onto the position̂y, so that

lim
t→+∞

xi,t = ŷ

Proof: Lemma A.1 in Appendix A shows that there is a non-zero probability that a particlei will

move closer tôy by at least a distanceρ > 0. This satisfies the localconvergence conditiongiven in

Section 4.2.
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Step 2.a.i of the PSO algorithm (refer to Figure 1) ensures thatyi will be updated if the new position,

xi,t+1, yields a smaller value inf . This implies that thealgorithm conditionof Section 4.2 holds, where

xi,t+1 substitutesξ andx is replaced withyi.

Application of Theorem 4.1 then implies thatlimt→+∞ yi,t = ŷ. In the deterministic version of the

PSO, direct application of Lemma 5.1 implies thatlimt→+∞ xi,t = yi,t = ŷ. Becauselimt→+∞ yi,t =

ŷ, the approach of Poli [19] can be applied to extend this result to the stochastic case to infer that

limt→+∞ xi,t = yi,t = ŷ.

The lemmas above identify a defect of the basic PSO algorithm: There exists states in which the

particles will stop moving, regardless of whether the global best particle is located at a minimiser. One

trivial example is the state where allxi = yi = ŷ,∀i ∈ Z, 1 ≤ i ≤ h. In this state, no further progress

can be made and the search should be terminated. This problem, also empirically observed in [28], is

explained in more detail next.

Consider the components ofg separately. Application ofg2 can be viewed as sampling a point from

a distribution with hyper-rectangular supportM
′′

i,t as illustrated in Figure 3. The side lengths ofM
′′

i,t

depend on the distance betweenxi,t andyi,t. From Lemma 5.3, this distance tends to zero, since in the

limit, xi,t = yi,t = ŷt, which violates the convergence condition for local search, since the probability

that a point is sampled closer to the optimality regionRǫ becomes zero beforêy necessarily reachesRǫ.

The same argument applies tog3 and ŷ. The basic PSO is therefore said toconverge prematurely, or

stagnate.

Examples of states that converge prematurely can easily be constructed. Consider a two-dimensional

search space and a swarm with only two particles. One of the particles, say particle 1, will be the global

best particle. Let the symbolsa1 througha5 andp1, p2 denote arbitrary constants. Then the swarm will

stagnate whenever it reaches the following state:
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x′

i

yi

ŷ

c1r1,1(yi,1 − xi,1)

c 1
r 1

,2
(y

i,
2
−
x

i,
2
)

M ′′

i,k

Figure 3. A depiction of the hyper-rectangular support of the space sampled by the functiong2. Note thatyi

need not be included inM ′′

i,k — this depends on the value ofc1.

Particle 1 Particle 2

v1 = a1(0, 1) v2 = a2(0, 1)

x1 = (p1, p2) x2 = (p1, p2) + a3(0, 1)

y1 = (p1, p2) + a4(0, 1) y2 = (p1, p2) + a5(0, 1)

This is the state where all the particles are constrained to move only along one of the axes of the search

space. There is a non-zero probability that the swarm could reach this state, or it could even have been

initialised to this state. If the minimiser of the function is not of the form(p1, p3), wherep3 is an arbitrary

value, then the swarm will not be able to reach it. The fundamental problem here is that all movement in

the swarm is relative to other particles in the swarm.

In summary, there exists initial states in which the original PSO algorithm can start that will lead to

a stagnant state in a finite number of steps. By using a large number of particles, the probability of be-

coming trapped in such a stagnant state is reduced dramatically. It is shown experimentally in Section 9,

however, that with only 2 particles the swarm can rapidly stagnate. This supports the theory that the

basic PSO algorithm is not a local search algorithm, since itis not guaranteed to locate a minimiser from

an arbitrary initial state.
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6. Guaranteed Convergence PSO

A solution to the problem of stagnation is to change the velocity update equation for the global best

particle to force a position change of the global best. One approach to achieve this was developed by Van

den Bergh and Engelbrecht [3], referred to as the guaranteedconvergence PSO (GCPSO). Letτt be the

index of the global best particle at timet, so that

τt , argmin
i

f(yi,t), i ∈ Z, 1 ≤ i ≤ h (33)

which, from the definition of̂yt, implies that

yτt , ŷt. (34)

In the absence of an explicit time index, it is assumed thatŷ, and thusyτ , refers to the most recent

value of the global best position of the swarm. Recall thatf(yτ ) is monotonically non-increasing on a

minimisation problem.

The original PSO algorithm applies equation (3) to all of theparticles to compute the velocity update

for each particle, which in turn is used to update the position of each particle using equation (2). In the

GCPSO, the objective is to change the update equation for only the global best particle (particleτ ) to

xτj,t+1 = ŷj,t + wvτj,t + ρt(1− 2rt). (35)

This new position of the global best particle thus has three terms: the first term which ensures the new

position is calculated relative to the current global best position, the second term which carries over

the momentum of the global best particle, and the third term which samples a point from a uniform

distribution on a hypercube with side lengths2ρ; the value ofρ is defined below. Provided thatρ is

strictly greater than zero, this update equation ensures that the global best particle can never stop moving

completely.

All that is required to implement the GCPSO is a new step in thealgorithm that computes a different
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velocity update for the global best particle. Thus, insteadof using equation (3), the velocity update of

the global best particle is computed using

vτj,t+1 = −xτj,t + ŷj,t + wvτj,t + ρt(1− 2rt). (36)

Observe that substitution of equation (36) into equation (2) yields equation (35). The scaling factorρt is

defined as

ρt+1 =































2ρt if #successes > sc

0.5ρt if #failures > fc andρt > ǫm

ρt otherwise

(37)

whereǫm represents the smallest allowable value ofρ — typically set to machine precision. Assum-

ing minimisation, a ‘failure’ occurs whenf(ŷt) ≥ f(ŷt−1), and the counter variable#failures is

subsequently incremented (i.e., no apparent progress has been made). A success then occurs when

f(ŷt) < f(ŷt−1). Upon a success, the failure count is reset to zero; conversely, when the failure count

is increased, the success count is reset to zero. The controlthreshold values were fixed atfc = 5 and

sc = 5.

Equation (35) represents the action of sampling a point froma hypercube with side lengths2ρ cen-

tered around̂y +wv. LetMk denote this hypercube, and letµk denote the uniform probability measure

defined on the hypercubeMk. Figure 4 illustrates how a new samplexτ,k+1 is generated. Stagnation is

prevented by ensuring thatρ > 0 for all time steps. Before proving that the GCPSO is a local search

algorithm, a few details regardingxτ,k must first be discussed.

Note that̂yk is always inL0. It is possible, however, thatxτ,k /∈ L0, due to the cumulative effect of

a growingv vector, so that̂yk + wvk /∈ L0. One of two scenarios now unfolds:ŷk ∈ Mk or ŷk /∈ Mk.

In the first case, this means that a point arbitrarily close toŷk may be sampled, includinĝyk itself. Since

ŷk ∈ L0, this means thatm[Mk ∩ L0] > 0. The second case implies thatρ is such thatMk does not

include ŷk. This happens whenvτ,t points outwards fromL0. Sinceŷk is only updated when a better

solution is found, and from the definition ofL0, it is therefore clear that none of the points outside of
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xτ,k+1

ŷk + wvτ,k

ŷk

2ρk

Mk

Figure 4. The hyper-cubic supportMk of the sample spaceµk, centered around the pointŷk + wvk, as defined
by the position update step of the GCPSO. The pointxk+1 is an example of a point sampled by the new velocity
update step.

L0 will be selected to replacêyk. On the other hand,xτ,t is able to move outside ofL0 because of the

residual velocityvτ,t. Assume for the moment thatρ is insignificantly small. Equation (3) shows that,

if w < 1, then clearly||xτ,t+1 − ŷk|| < ||xτ,t − ŷk||, assuming thatxτ,t 6= ŷk. After a finite number

of time stepsl, xτ,t+l will be in L0 once more. This implies thatm[Mk+l ∩ L0] > 0, so that a point

arbitrarily close tôyk can be sampled once more.

Both cases imply that a new sampled point arbitrarily close to ŷk, and thus inL0, can be gener-

ated. Note that the second case only comes into play whenŷk is close to the boundary ofL0. In low-

dimensional search spaces, the first case, whereMk ⊂ L0, can be considered the norm, however, the

opposite may happen more frequently in high-dimensional search spaces. This would seem to indicate

that the efficiency of the algorithm will deteriorate in high-dimensional search spaces.

The existence of a non-degenerate sampling volumeµk with supportMk has thus been shown for

the GCPSO algorithm. Using this fact, it is now possible to consider the local convergence property of

the GCPSO algorithm.

If it is assumed thatS is compact and has a non-empty interior, thenL0 will also be compact with a

non-empty interior. Further,L0 will include the essential infimum, contained in the optimality regionRǫ,

by definition. NowRǫ is compact with a non-empty interior, thus a ballB′ centered atc′ contained in

Rǫ can be defined as shown in Figure 5. Pick the pointx′ ∈ argmax
x
{dist(c′,x)|x ∈ L0}, as illustrated

in Figure 5. LetB be the hypercube centered atc′, with sides of length2(dist(c′,x′)− 0.5ρ).
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ŷ

x′

Rǫ

B

0.5ρ

C
c′

B′

y

2ρ

C ∩B
M ′

i,k

Figure 5. The intersectionC ∩B, withB centered onc′ ∈ Rǫ.

LetC be the convex hull ofx′ andB′ (see Figure 5). Consider a line tangent toB′, passing through

x′ (i.e., one of the edges ofC). This line is the longest such line, forx′ is the point furthest fromB′.

This implies that the angle subtended byx′ is the smallest such angle of any point inL0. In turn, this

implies that the volumeC ∩B is smaller than that ofC ′∩B for any other convex hullC ′ defined by any

arbitrary pointx ∈ L0.

Then for allx in L0

µk[dist(D(ŷ,xτ ), Rǫ) < dist(x, Rǫ)− 0.5ρ] ≥ η = µ[C ∩B] > 0 (38)

whereµk is the uniform distribution on the hypercube centered atx, with side length2ρ. It was shown

above that the modified PSO can provide such a hypercube.

Sinceµ[C ∩ B] > 0, the probability of selecting a new pointx so that it is closer to the optimality

regionRǫ is always non-zero. This is sufficient to show that the Guaranteed Convergence Particle Swarm

Optimiser (GCPSO) complies with the convergence conditionfor local search, because

1. The GCPSO can always generate a sample around a point inL0, assuminĝy,yi ∈ L0;
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2. Given any starting point inL0, the GCPSO algorithm guarantees a non-degenerate samplingvol-

ume with a non-zero probability of sampling a point closer tothe optimality region,Rǫ.

The GCPSO algorithm thus satisfies both the algorithm and convergence conditions for local search.

This completes the proof that the sequence of values{ŷk}∞k=0 generated by the GCPSO algorithm

will converge to the optimality region, under the constraints of a local optimisation algorithm, regardless

of the initial state of the swarm.

6.1. Functions with multiple minima

It was assumed above thatL0 was convex-compact. A non-unimodal function, withS including multiple

minima, may result in a non-convex setL0.

Of particular interest would be the class of functions that can be decomposed into a set of convex-

compact subsets, each subset containing only one local minimum. By Lemma 5.3, it is clear that all

the particles in the swarm will eventually converge onto theposition of the global best particle. In the

GCPSO, the global best particle, in turn, is guaranteed to converge on a local minimum — there is just

no guarantee that this will be any specific minimum, for example, a global minimum.

The convergence proofs presented above do not provide any insight into the behaviour of the GCPSO

on functions that can not be decomposed into such convex-compact subsets.

7. Global Convergence of PSO

In Section 5 it was shown that the original PSO is not guaranteed to converge on a local minimum. From

this, the following trivial proof follows:

Lemma 7.1. Let x∗ be the global minimiser off onS, and letxt be the sequence of proposed solutions

generated by the original PSO algorithm. ThenP (limt→+∞ xt 6= x∗) > 0.

Proof by counter-example:Assume a unimodal functionf , with its global minimum located in the

convex-compact set,L0, as defined in Equation (17). As shown in Section 5, the original PSO may

converge on a pointx 6= x∗, and is thus not guaranteed to converge on the minimum located inL0.
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In contrast with the original PSO, it was shown in Section 6 that the GCPSO is guaranteed to con-

verge on the local minimiser off . It is stated without proof that the GCPSO is not able to guarantee

convergence to a global minimiser, owing to its strong localconvergence properties. Instead, several

new algorithms are constructed in Section 8 in a way that guarantees convergence onto a global min-

imiser.

8. Stochastic Global PSOs

In Section 6 it was proved that the GCPSO algorithm convergeson a local minimiser with probability

1, as the number of iterations approaches infinity. It is possible to extend the GCPSO to become a

stochastic global search algorithm, so that it will locate the global minimiser of the objective function.

Two algorithms with this property are introduced below.

8.1. Random Particle Approach

The simplest way to construct a PSO-based global search algorithm is to directly address the global

search convergence condition. This can be achieved by adding randomised particlesto the swarm.

Particlei can be made a randomised particle by simply resetting its position to a random position in

search space periodically.

Any number of particles in the swarm can be made random particles, but the optimal ratio of random

versus normal particles depends on the swarm size. Letsrand denote the number of random particles in

the swarm. One possible implementation of the random particle approach is outlined in Figure 6. This

implementation resets a specific particle’s position only every srand iterations, allowing the particle to

explore the region in which it was initialised before resetting it again. The resulting algorithm is called

the Randomised Particle Swarm Optimiser, or RPSO.

It is trivial to show that the RPSO algorithm is a global search algorithm. The personal best position

update equations are unaltered, thus the algorithm clearlysatisfies the algorithm condition, as was shown

for the original PSO in Section 5.1. During each iteration one particle assumes a random position in

the search space. The sample space from which this sample is drawn has supportMk = S, so that
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Create and initialise ann-dimensional PSO :P

sidx ← 0

repeat:

if sidx 6= τ

then P.xsidx
= random vector()

sidx = (sidx + 1) modulo srand

for each particlei ∈ [1..s] :

if f(P.xi) < f(P.yi)

then P.yi = P.xi

if f(P.yi) < f(P.ŷ)

then P.ŷ = P.yi

endfor

Perform PSO updates onP using equations (1)–2)

until stopping condition is true

Figure 6. Pseudo code for the RPSO algorithm.

m[Mk] = m[S]. This satisfies the global search convergence condition, soby Theorem 4.2 this is a

global search algorithm.

8.2. Multi-start Approach

A different method of extending the GCPSO algorithm to become a global search algorithm can be

constructed as follows:

1. Initialise all the particles to random positions in the search space.

2. Run the GCPSO algorithm until it converges on a local minimiser. Record the position of this local

minimiser, and return to step 1.

The above algorithm is referred to as the Multi-start PSO (MPSO). There exist several criteria that can

be used to determine whether the GCPSO algorithm has converged.

Maximum Swarm Radius: The maximum swarm radius can be computed directly using

r = ‖xm − xτ‖, m ∈ Z, 1 ≤ m ≤ h
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where

‖xm − xτ‖ ≥ ‖xi − xτ‖, ∀i ∈ Z, 1 ≤ i ≤ h

The normalised radius,

rnorm =
r

diam(S)

can then be used to decide how close the particles are to the global best particle. The analysis in

[1, 4] (also refer to Section 5.1) suggests that the swarm stagnates when all the particles coincide

with the global best particle in search space. Whenrnorm is close to zero, the swarm has little

potential for improvement, unless the global best particleis still moving. Alternatively, a single

particle may still be wandering around while all the other particles have already coincided with

the global best particle. Therefore this method is not robust, especially since it does not take the

objective function values into account.

It was found empirically that re-starting the swarm whenrnorm < 10−6 produced acceptable

results on a test set of benchmark functions. Clearly, larger thresholds will increase the sensitivity

of the algorithm, but note that re-starting the swarm too frequently will prevent it from performing

a fine-grained search.

Cluster Analysis: A more aggressive variant of the Maximum Swarm Radius method can be con-

structed by clustering the particles in search space. The clustering algorithm works as follows:

1. Initialise the clusterC to contain only the global best position

2. All particles such thatdist(xi, C) < rthresh are added to the cluster

3. Repeat step 2 at least 5 times.

The ratio|C|/h is then computed, where|C| denotes the number of particles in the cluster — note

that only a single cluster is grown. If the ratio is greater than some threshold, say 0.6, then the

swarm is considered to have converged. Note that this methodhas the same flaws as the Maximum

Swarm Radius technique, except that it will more readily decide that the swarm has converged.
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Empirical results obtained on a small set of test functions indicated that a value ofrthresh = 10−6

produced acceptable results; the swarm was declared to haveconverged when more than 60% of the

particles were clustered around the global best particle. Using a ratio of more than 60% decreases

the sensitivity of the algorithm, bringing with it the possibility of failing to detect stagnation early

on. Largerrthresh values will increase the sensitivity, similarly to the corresponding threshold

value in the Maximum Swarm Radius technique.

Objective Function Slope: This approach does not take into account the relative positions of the

particles in search space; instead it bases its decision solely on the rate of change in the objective

function. A normalised objective function value is obtained by using

fratio =
f(ŷt)− f(ŷt−1)

f(ŷt)

Note thatfratio is undefined iff(ŷ) = 0. However, if the global minimum value off is in fact

0, then the algorithm has already found the global minimum, and there is no need to restart the

swarm. Note that this normalisation may cause problems for functions that do not have a function

value of0 at their global minima. All of the test functions examined inSection 9 have this property,

though. If this normalised value is smaller than some threshold, a counter is incremented. Once

the counter reaches a certain threshold, the swarm is assumed to have converged. This approach is

superior to the other two methods mentioned first in that it actually determines whether the swarm

is still making progress, instead of trying to infer it from the positions of the particles. There

is one remaining flaw with this approach, though. If half of the particles (including the global

best particle) are trapped in the basin of some minimum, the other half may yet discover a better

minimum in the next few iterations. This possibility can be countered by using one of the first two

methods to check for this scenario.

The optimal threshold for thefratio value depends on the range of the objective function values,as

well as the machine precision of the platform on which the algorithm is implemented. Empirical

results indicated that a value of10−10 works well. Smaller thresholds increase the sensitivity of
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Create and initialise ann-dimensional PSO :P

repeat:

if f(P.ŷ) < f(z)

then z = P.ŷ

if P has converged

then re-initialise all particles

for each particlei ∈ [1..s] :

if f(P.xi) < f(P.yi)

then P.yi = P.xi

if f(P.yi) < f(P.ŷ)

then P.ŷ = P.yi

endfor

Perform PSO updates onP using equations (1)–(2)

until stopping condition is true

Figure 7. Pseudo code for the MPSO algorithm.

the algorithm, possibly causing the algorithm to mistake a period of slow progress for stagnation.

Figure 7 is the outline of an algorithm making use of the multi-start (or restart) approach. Any of

the convergence criteria mentioned above can be used. This type of algorithm is called the Multi-start

Particle Swarm Optimiser (MPSO).

The MPSO algorithm is a global search algorithm, a property that will now be proved using The-

orem 4.2. The MPSO satisfies the algorithm condition, similarly to the RPSO in the previous section.

To satisfy the global search convergence condition, the MPSO must be able to restart an infinite number

of times. This requires that the GCPSO algorithm converges onto a local minimum, which was proved

in Section 6, and that the convergence-detection mechanismsubsequently detects this. The Maximum

Swarm Radius and Cluster Analysis methods indicate that theswarm has converged when the particles

are arbitrarily close to the global best position,ŷ. Lemma 5.3 has shown that the particles tend to the

statexi = yi = ŷ. Since the swarm is guaranteed to reach this state, these twoconvergence criteria

will always detect convergence and trigger a restart. The Objective Function Slope criterion will detect

convergence whenever the value off(ŷ) stops changing. This state is guaranteed, upon discovery ofa

local minimum, by the local convergence property of the GCPSO. This implies that, regardless of the
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convergence-detection criterion used, the MPSO algorithmwill be able to re-initialise the positions of

all the particles an infinite number of times, if it is allowedto run for an infinite number of iterations.

The re-initialisation process assigns to each particle a position sampled from the whole search space

S. Since the support of this sample space,Mk, is equal to the search space,m[Mk] = m[S]. This

satisfies the global search convergence condition, which means that, by Theorem 4.2, the MPSO is a

global search algorithm.

8.3. Rate of Convergence

The rate of convergence of a stochastic global method like the MPSO is directly dependent on the volume

of the sample space, since the number of points in the sample space grows exponentially with the dimen-

sion of the search space. This implies that the MPSO algorithm will easily find the global minimiser of a

2-dimensional objective function in a relatively small number of iterations. If a function of comparable

complexity in 20 dimensions is considered, the algorithm will take significantly longer to find the global

minimiser. An indication of the severity of the problem can be obtained by considering the following

simple example. Letd be the side length of a hypercube defining the optimality regionRǫ. The volume

of the optimality region is thendn, wheren is the number of dimensions. If the search spaceS is a

hypercube with side lengthsl, then its volume will beln. The probability of generating a sample in the

optimality region in the first iteration of the algorithm, assuming a uniform distribution function onS, is

then
dn

ln
=

(

d

l

)n

Since the optimality region is certainly smaller than the search space itself, this implies thatd/l < 1, so

that

lim
n→+∞

(

d

l

)n

= 0

If a pseudo-random number algorithm is used to generate the samples used by the search algorithm, and

the period of the generator is sufficiently large, then the sampling process will be equivalent to sampling

without replacement. The probability of sampling from the optimality region will thus increase slightly
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on successive samples, but this will not have a significant impact since the number of points in the search

space still grows exponentially with the number of dimensions. This implies that the ability of the MPSO

to find the global minimiser of a function in a finite number of iterations deteriorates very rapidly as the

number of dimensions is increased.

The stretching technique proposed by Parsopouloset al. [18] uses the equivalent of a MPSO using

the original PSO instead of the GCPSO for the local search component of their algorithm. They do not

provide any proofs of global convergence, but they present empirical results to support the claim that

their method is global. Their algorithm modifies the objective function, and re-initialises the particles

once a local minimiser is discovered. It is important to realise, though, that their algorithm’s ability to

locate the global minimiser comes from the periodic re-initialisation, and not from the transform that

they apply to the objective function. This means that their algorithm is subject to the same limitation

that the MPSO suffers: the curse of dimensionality. The examples they present are all restricted to two

dimensions, which means that the re-initialisation methodwill have a good chance of finding the global

minimiser within a small number of iterations. These results are misleading, since the algorithm will

perform significantly worse on, say, 100-dimensional problems.

8.4. Stopping Criteria

While it is relatively simple to design a stopping criterionfor a local search algorithm, it is rather more

involved to do so for a global search algorithm, unless the value of the objective function in the global

minimiser is known in advance. To illustrate: when the GCPSOalgorithm fails to improve the value of

f(ŷ) over many consecutive iterations, it is relatively safe to assume that it has found a local minimum.

When the MPSO exhibits the same behaviour, that is, it fails to improve on the best solution discovered

so far after, say, 100 restarts, no such conclusion can be drawn. As illustrated above, the probability

of sampling a point from the optimality region decreases exponentially as the number of dimensions

increases. This means that the number of restarts required before giving up must grow accordingly, as

will now be shown.

Solis and Wets provided some guidelines for choosing the correct number of iterations required for a
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stochastic search algorithm to discover the global minimiser [24]. For example, they defined the number

of iterations required to reach the optimality region,Nλ, with at least probability1− λ as follows:

P [ŷk /∈ Rǫ] ≤ λ, ∀k > Nλ

Let k denote the number of restarts in the MPSO algorithm. Then, ifa valuem is known so that0 <

m ≤ µk[Rǫ] for all k, then

P [ŷk /∈ Rǫ] ≤ (1−m)k

Choosing an integer

Nλ ≥
⌈

lnλ

ln(1−m)

⌉

yields the required property, since whenk ≥ Nλ, thenlnλ/ ln(1 − m) ≤ k, because(1 −m)k ≥ λ.

Note that this calculation requires that a lower boundm is known forµk[Rǫ], which implies that the size

and shape ofRǫ is known in advance. If the example from Section 8.3 is continued, we can use the value

m = (d/l)n as such a lower bound. This implies that the number of iterations required to reachRǫ with

probability1− λ is

Nλ ≥
lnλ

ln
(

1−
(

d
l

)n
)

However, ln
(

1−
(

d
l

)n
)

→ 0 asn → +∞, which means thatNλ → +∞, confirming our earlier

suspicions.

9. Experimental Results

This section contains some brief results regarding the behavior of the original PSO and the GCPSO, as

well as the stochastic global PSOs. There are two main themesthat were investigated:

1. Does the guaranteed convergence of the GCPSO translate into improved performance on unimodal

and/or multimodal functions, compared to the original PSO?How does the swarm size (h) influ-

ence the results?
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2. Do the proposed global variants of the PSO (Section 8.2) improve on the performance of the

GCPSO on multimodal functions?

To address these questions, the following functions were used for testing:

Sphere:

f0(x) =

n
∑

j=1

x2
j (39)

Rosenbrock (or banana-valley):

f1(x) =

n/2
∑

j=1

[100(x2j − x2
2j−1)

2 + (1− x2j−1)
2] (40)

Quadric:

f2(x) =

n
∑

j=1

(

j
∑

k=1

xj

)2

(41)

GeneralisedRastrigin:

f3(x) =
n
∑

j=1

(x2
j − 10 cos(2πxj) + 10) (42)

GeneralisedGriewank:

f4(x) = 1 +
1

4000

n
∑

j=1

x2
j −

n
∏

j=1

cos(
xj√
j
) (43)

Schwefel:

f5(x) =
n
∑

j=1

xj sin(
√

|xj |) + 418.9829n (44)

Ackley:

f6(x) = −20e
−0.2

q

1

n

Pn
j=1

x2

j − e 1

n

Pn
j=1

cos(2πxj) + 20 + e (45)

This set of functions contains representatives of both the unimodal and multimodal objective function

classes. Table 1 indicates the dimensions for which the functions were evaluated, as well as the size of

the search domain.
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Table 1. Parameters used for all experiments.

Function n Domain

f0 30 [-100,100]

f1 30 [-2.048,2.048]

f3 30 [-100,100]

f4 30 [-5.12,5.12]

f5 30 [-600,600]

f6 30 [-500,500]

The details of the PSO algorithms that featured in the experiments are provided in Sections 9.1 and

9.2. To provide an approximate idea of PSO performance relative to evolutionary algorithms, results

obtained with a genetic algorithm were included in the global optimisation experiments of Section 9.2.

The GA employed a binary coding scheme with 16 bits allocatedto each variable. A two-point bitwise

crossover operator was used alongside a single-bit mutation operator. The crossover rate was set to 0.6

and the mutation rate to 0.02. The population size was fixed at100 members, with selection pressure

exerted using a fitness-proportionate model. A one-elementelitist strategy ensured that the algorithm

retained the best solution over all generations. This specific configuration corresponds to the GA used

by Potter in his CCGA experiments [20], and was included hereto preserve continuity with a previous

comparison between a genetic algorithm and a PSO [2].

9.1. PSO vs GCPSO

The two algorithms used for the first experiments are as follows:

PSO: The original PSO algorithm, using equations (3) and (2).

GCPSO: The modified PSO, using equations (36) and (35) to update theglobal best particle, while

using equations (3) and (2) for all the other particles. The critical thresholdssc andfc, defined in

equation (37), were both set to 5.

Both algorithms were configured to use parameter settings ofc1 = c2 = 1.4961798 andw = 0.729844,

since these values lead to rapid convergence [9, 4]. The swarm size,h, was varied from 2 to 20 in



32 F. van den Bergh, A.P. Engelbrecht / Particle Swarm Optimiser Convergence Proof

Table 2. Mean function values of global best particle after2× 105 evaluations, over 500 simulations.

Fn PSO (h=2) GCPSO (h=2)

f0 3.97e+04± 9.87e+03 4.59e−320± 0.00e+00

f1 1.45e+03± 8.00e+02 3.58e−01± 3.93e−01

f2 8.60e+04± 4.96e+04 6.64e−13± 1.64e−12

f3 2.93e+02± 4.29e+01 1.72e+02± 4.11e+01

f4 3.53e+02± 9.18e+01 1.17e−02± 1.41e−02

f5 8.82e+03± 7.63e+02 7.31e+03± 1.41e+03

f6 1.91e+01± 6.95e−01 1.83e+01± 6.40e−01

Fn PSO (h=20) GCPSO (h=20)

f0 1.92e−93± 4.30e−92 1.28e−191± 0.00e+00

f1 1.15e−02± 2.53e−02 3.86e−02± 4.45e−02

f2 4.27e−15± 5.68e−14 1.12e−21± 1.12e−20

f3 6.91e+01± 1.85e+01 7.42e+01± 1.93e+01

f4 1.16e−01± 2.86e−01 2.86e−02± 8.53e−02

f5 4.50e+03± 6.16e+02 4.85e+03± 6.68e+02

f6 3.47e+00± 1.55e+00 3.14e+00± 1.85e+00
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increments of 2 to investigate the effects of swarm size on stagnation. In order to keep the comparisons

across swarm sizes fair, the total number of function evaluations was kept constant at2×105 evaluations,

which implied that the number of generations was reduced as the swarm size was increased. It is expected

that the PSO will stagnate more easily with small swarm sizes, while the GCPSO is expected to be able

to avoid stagnation even for swarm sizes ofh = 2. Table 2 presents the mean function value over

500 runs obtained from the global best particle after2 × 105 function evaluations for each of the four

configurations indicated, whereh denotes the swarm size. The median function values of the global best

particle after2 × 105 function evaluations over 500 runs are plotted against swarm sizes in the range

2 to 20 in Figure 8; the median was selected to produce cleanerplots through its greater robustness to

outliers.

The functions belong to two different categories: functions f0–f2 are strictly unimodal, while func-

tionsf3–f6 contain many local minima. Since neither of the two algorithms tested here are designed to

find the global minimum in the presence of many local minima, the results for functionsf3–f6 should be

seen only as an indication of their ability to converge in thepresence of multiple minima.

The trend is clearly visible: when considering swarms containing only 2 particles, the GCPSO per-

forms significantly better than the PSO, especially on functions f0–f2. On the other functions, the

improvement is less dramatic, as both algorithms tend to become trapped in the same type of local mini-

mum.

When considering the experiments with a more typical 20 particles per swarm, the GCPSO does

not appear to have a definite advantage, with four of the test functions favouring the GCPSO, and three

favouring the PSO. The graphs presented in Figure 8 show a clear pattern for functionsf0 and f2:

the performance of the GCPSOdeteriorateswhen the swarm size increases beyondh = 10. Even

Griewank’s function (f4) appears to exhibit decreasing performance with increasing GCPSO swarm

sizes; this may be because the product term in equation (43) is dominated by the quadratic term for large

n, so that the function behaves more likef0. On multi-modal functionsf3 (not shown in Figure 8),

f5, andf6 the performance of the GCPSO improves with increasing swarmsize, just like the original

PSO. On the unimodal Rosenbrock function (f1) the original PSO attains peak performance ath = 10;
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Figure 8. Median function value of the global best particle after 2×105 function evaluations, computed over 500
simulations. Theh-axis represents the swarm size. The profile for Rastrigin’sfunction (f3) is not shown, but has
the same shape and relative ranking as that off5.
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Figure 9. Error profiles for the Sphere function.

although not clearly visible in Figure 8(a) and (c), similarbehaviour is observed on the other unimodal

functions. For a fixed number of function evaluations, both the original PSO and the GCPSO have an

optimal swarm size for strongly unimodal functions; once a sufficient level of diversity is guaranteed by

the optimal number of particles, any additional particles will just consume additional function evaluations

without contributing to performance. From the results in Table 2 and Figure 8, it would appear that the

GCPSO has a smaller optimal swarm size compared to the original PSO. This is a desirable property

for cooperative PSO algorithms such as the CPSO [2], where smaller swarm sizes help to decrease the

overall computational complexity of the algorithm.

Figures 9 and 10 are profiles of the mean function value of the global best particle over 500 runs,

plotted against the number of function evaluations. These values were sampled at every iteration of the

respective algorithms, and then downsampled by a factor of 10 to aid visualisation. The PSO-based algo-
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Figure 10. Error profiles for the Griewank function.
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rithms have the number of particles used appended to their labels in the legend. Note that the GCPSO-2

curve in Figure 9 becomes flat at around1.3×105 function evaluations – this is most likely caused by the

limited machine precision, as the final value returned by theconfiguration is very close to the smallest

number that can be represented on the test machine. Figure 10shows that none of the PSO algorithms

tested here could escape the local minima into which they settled, for their graphs are flat after the first

100000 function evaluations.

9.2. Global PSOs

Section 8 introduced two strategies for extending the PSO algorithm to ensure guaranteed convergence

on a global minimiser. Both of these strategies only guarantee convergence on a global optimiser as

the number of iterations approach infinity. It therefore remains to be seen if these strategies offer any

practical advantages in a finite number of iterations. Experiments involving both the RPSO and the

MPSO algorithm were implemented to investigate this matter.

The MPSO algorithm has three different mechanisms (see Section 8.2) that can be used to detect

convergence, signaling that the algorithm must re-start. These three convergence-detection methods are

included in the comparison, yielding the following algorithms:

MPSOradius: The MPSO algorithm, using themaximum swarm radiusconvergence detection tech-

nique described in Section 8.2. The algorithm was configuredso that the swarm was declared to

have stagnated whenrnorm < 10−6. This value was found (informally) to produce good results on

a small set of test functions.

MPSOcluster: The MPSO algorithm, using thecluster analysisconvergence detection technique de-

scribed in Section 8.2. The value ofrthresh was set to10−6; the swarm was re-initialised whenever

more than 60% of the particles were clustered around the global best particle. Again, these values

were found empirically to result in acceptable performanceon a small set of test functions.

MPSOslope: The MPSO algorithm, using theobjective function slopeconvergence detection technique

described in Section 8.2. The algorithm re-initialised theswarm wheneverfratio < 10−10 for more



38 F. van den Bergh, A.P. Engelbrecht / Particle Swarm Optimiser Convergence Proof

Table 3. Comparing various global algorithms on Ackley’s function.

Algorithm Mean f(x) Median f(x)

GCPSO 2.96e+00± 6.36e−01 2.70e+00

MPSOradius 7.51e−01± 1.35e−01 9.31e−01

MPSOcluster 1.65e+00± 1.46e−01 9.31e−01

MPSOslope 1.65e+00± 1.70e−01 1.34e+00

RPSO 2.96e+00± 3.53e−01 2.96e+00

than 500 consecutive iterations. These values were chosen based on previous experience with the

algorithm, where it was found that they result in acceptableperformance.

RPSO: The RPSO algorithm, described in Section 8.1. No extra particles were added to act as ran-

domised particles, so that three of the 20 normal particles in the swarm were converted into ran-

domised particles, leaving only 17 normal particles. This value was chosen to limit the possibly

disruptive influence that the randomised particles could have on the overall behaviour of the swarm.

All experiments were performed using a swarm size of 20, withparameter settings ofc1 = c2 =

1.4961798 andw = 0.729844. The GCPSO algorithm used in these experiments was configured identi-

cally to the one employed in Section 9.1.

These algorithms are allstochasticglobal optimisers, thus they are not guaranteed to find the global

(or even a good local) minimum on every finite run. Since only one poor solution, say on the order

of 10−3, can skew the mean of a population otherwise consisting of values on the order of10−19, the

median of each simulation run is also provided along with themean.

Table 3 presents the results of applying the four global PSO-based algorithms to the task of min-

imising Ackley’s function. The MPSOradius algorithm performed significantly better than any other

algorithm. Note that all three of the MPSO algorithms performed significantly better than the GCPSO

and RPSO algorithms. On this function it does not appear thatthe RPSO algorithm had any positive

influence on the performance of the algorithm, since it had the same mean performance as the GCPSO

algorithm.
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Table 4. Comparing various global algorithms on Rastrigin’s function.

Algorithm Mean f(x) Median f(x)

GCPSO 7.61e+01± 5.07e+00 7.61e+01

MPSOradius 4.58e+01± 1.45e+00 4.58e+01

MPSOcluster 4.48e+01± 1.41e+00 4.48e+01

MPSOslope 4.97e+01± 1.59e+00 4.97e+01

RPSO 7.41e+01± 3.49e+00 7.41e+01

Table 5. Comparing various global algorithms on Griewank’sfunction.

Algorithm Mean f(x) Median f(x)

GCPSO 2.21e−02± 4.84e−03 1.23e−02

MPSOradius 1.99e−09± 1.87e−10 1.52e−09

MPSOcluster 3.69e−02± 8.19e−03 1.48e−02

MPSOslope 1.68e−03± 7.39e−04 2.17e−19

RPSO 4.53e−02± 7.72e−03 1.23e−02

The results in Table 4 were obtained by minimising Rastrigin’s function using the various algorithms.

Note that there was once again no significant difference between the performance of the RPSO algorithm

and that of the GCPSO algorithm. All three the MPSO algorithms performed significantly better than the

GCPSO. Amongst themselves the MPSOradius and MPSOcluster algorithms performed significantly bet-

ter than the MPSOslope algorithm, although there was no significant difference between the performance

of the MPSOradius and MPSOcluster algorithms.

Table 5 presents the results of minimising Griewank’s function using the various algorithms. Both

the MPSOcluster and RPSO algorithms performed significantlyworse than the GCPSO. Clearly, the

MPSOcluster algorithm had no beneficial effect on this function, most likely because it failed to trigger,

i.e., it could not detect that the swarm has stagnated. This phenomenon can be attributed to the fact that

the adjustable parameter (rthresh) in the MPSOcluster algorithm was set to a value that was too small for

Griewank’s function. If the function contains many local minima very close to one another, the swarm

could stagnate with a few particles scattered over several neighbouring minima. In this case, the cluster
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Table 6. Comparing various global algorithms on Schwefel’sfunction.

Algorithm Mean f(x) Median f(x)

GCPSO 4.87e+03± 1.31e+02 4.87e+03

MPSOradius 3.71e+03± 8.07e+01 3.71e+03

MPSOcluster 4.85e+03± 1.32e+02 4.85e+03

MPSOslope 4.08e+03± 8.25e+01 4.08e+03

RPSO 4.73e+03± 1.38e+02 4.73e+03

detection algorithm could fail, since there are too few particles close to the global best particle.

Note the large difference between the mean and the median values of the MPSOslope algorithm re-

sults. Based on the median, it is clear that the MPSOslope algorithm performed better than the MPSOradius

algorithm on most of the runs, although the mean does not reflect this. This is an indication that the

MPSOslope algorithm did not trigger often enough to detect stagnationduring all the simulation runs.

This suggests that future research should investigate automated methods for adjusting the sensitivity of

the MPSOslope algorithm.

Applying the various algorithms to the task of minimising Schwefel’s function yielded the results

presented in Table 6. The RPSO and MPSOcluster algorithms did not perform significantly better than

the baseline GCPSO algorithm. The other two MPSO algorithms, MPSOslope and MPSOradius, did

show a significant improvement over the GCPSO algorithm. TheMPSOradius algorithm further showed

a significant improvement in performance over the MPSOslope algorithm, making it the overall best

algorithm on this function.

Figure 11 further elucidates the characteristics of the various algorithms when applied to Griewank’s

function. The GCPSO, MPSOcluster and RPSO algorithms all behave similarly, clearly failing to make

any further improvements after about 10000 function evaluations. This behaviour is normal for the

GCPSO, since it is not explicitly designed to deal with multiple local minima. For the RPSO, this

implies that the randomised particles have no effect. In fact, on none of the problems did the RPSO offer

any improvement in performance over the GCPSO.

The results presented in this section indicate that the MPSOfamily of algorithms have the ability
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Figure 11. The Griewank function error profile, obtained using the various global PSO algorithms.
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to improve the performance of the GCPSO on functions containing multiple minima. The effectiveness

of the MPSO algorithm depends on the algorithm used to determine when to re-initialise the swarm.

From the results it is clear that the MPSOslope and MPSOradius algorithms were able to improve on the

performance of the GCPSO consistently, while the MPSOcluster algorithm sometimes failed to deliver

improved performance.

10. Conclusions

The main objective of this paper was to provide convergence proofs for the particle swarm optimiser

(PSO). It was formally proven that the original PSO is not a local or global optimiser. A flaw in the PSO

was identified and addressed in the new, guaranteed convergence PSO (GCPSO). A proof was given to

show that the GCPSO is a local minimiser. Several versions ofthe PSO with global convergence were

presented. Rates of convergence and stopping conditions for the global PSO versions have been explored.

Experiments on unimodal functions show that the theoretical guaranteed local convergence property

of the GCPSO does indeed translate into improved performance compared to the original PSO algo-

rithm. The difference in performance between the GCPSO and the original PSO is more pronounced in

configurations with smaller swarm sizes. This indicates that stagnation of the original PSO is less of a

problem if the swarm is sufficiently large. There are certainconfigurations, such as the cooperative PSO

algorithms, where smaller swarm sizes are desirable. The GCPSO can thus be used to reduce the number

of function evaluations required to solve a problem, while maintaining the solution quality.

The experiments on multi-modal functions have shown that the GCPSO does not offer such a clear

advantage over the original PSO. This is not completely unexpected, because the guaranteed convergence

property of the GCPSO does not improve the global search behaviour of the algorithm explicitly. The

RPSO and MPSO variants do have a mechanism that ensures that they will locate the global minimiser,

but convergence onto a global minimiser is only guaranteed with the number of iterations approaching

infinity. The results obtained with the RPSO and MPSO variants show that the theoretical convergence

does not readily translate into improved performance over afinite number of iterations. In particular, the

RPSO variant does not appear to offer any improvement over the GCPSO. The MPSO variants do appear
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to offer some improvement, but it is clear that a much more sophisticated strategy will be required to

improve the rate of convergence onto global minimisers.
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A. Convergence of particles onto global best particle

Using a technique similar to that used in Section 6, it will now be shown that all the particles have a

non-zero probability of moving closer tôy by at least distanceρ, if it is not already within distanceρ

from ŷ.

Lemma A.1. Every particle1 ≤ i ≤ h has a non-zero probability of moving closer to the global best

particle position,̂y, by at least a distanceρ > 0.

Proof: LetB′ be a ball of radiusρ, centered at̂y. Pick the pointx′ ∈ argmax
x
{dist(ŷ,x)|x ∈ L0},

as illustrated in Figure 12. LetB be the hypercube centered atŷ, with sides of length2(dist(ŷ,x′) −

0.5ρ).

LetC be the convex hull ofx′ andB′ (see Figure 12). Consider a line tangent toB′, passing through

x′ (i.e., one of the edges ofC). This line is the longest such line, forx′ is the point furthest fromB′.

This implies that the angle subtended byx′ is the smallest such angle of any point inL0. In turn, this
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Figure 12. The intersectionC ∩B, withB centered on̂y.

implies that the volumeC ∩B is smaller than that ofC ′∩B for any other convex hullC ′ defined by any

arbitrary pointx ∈ L0.

Let Mi,k be the support of the hyper-rectangle from which particlei will sample its next position.

This hyper-rectangle is defined by its two corners,pi andqi:

pi,j = vij,k + c1(yij,k − xij,k) + c2(ŷij,t − xij,t), 1 ≤ j ≤ n (46)

qi = xi + vi (47)

Note that the distributionµi,k overMi,k is the convolution of the uniform distributions of its two com-

ponents, which assume values in the ranges[0, c1(yij,k − xij,k)] and[0, c2(ŷij,t − xij,t)]. Observe that

Mi,k will typically contain ŷ, although this is not required at every step to ensure convergence.

Then we have that for allx in L0, and thus all particle positionsxi,t,

µi,k[dist(g(xi,t), ŷ) < dist(xi,t, ŷ)− 0.5ρ] ≥ η = µ[C ∩B] > 0 (48)
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If a particle is thus further thanρ from ŷ in any dimensionj, then Equation (48) guarantees that the

particle will be able to move closer tôy by at least distanceρ.


