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1. Introduction

The particle swarm optimiser (PSO), introduced by KennadyEberhart [13, 8], is a population based
optimisation algorithm, originally derived from a simpdifi sociological model. The members of the
population, callegarticles represent potential solutions to the optimisation tadkeaid. Each particle
has a currenposition apersonal best positigrand avelocityassociated with it. The particles then move
through the search space under the influence of the atedatiges of previously discovered promising
solutions, as well as the influence of their own inertia.

The velocity update of each particle depends on: 1) therdistahat the particle is from the best
solution found by the swarm, called th&obal best positionand 2) the distance that the particle is from
its personal best positigrdefined as the best solution that the particle has pergor@ihe across during
its lifetime. Particles start from random positions in tleaixh space, so that initially some particles will
have large velocities, allowing them to explore a largeorgif the search space. Over time, particles
move closer together, eventually converging on a singlé@ipos

The ability of the PSO to find the global optima of functions maainly been studied experimen-
tally (refer to the list of papers at http://www.swarmititgtnce.org/). Claims like “The particle swarm
paradigm found the global optimum each run,...” have beetlernegarding Schaffer’s function [13].
These claims may give the impression that the PSO is a glgiethisation method, with only empir-
ical evidence to back up such claims. Theoretical analyage heen done to show that, under certain
conditions, particles converge to a stable point [7, 1, 2642 19]. While existing research proved that
particles converge to a stable point, nothing has been &aidtahe optimality of this point. A formal
analysis is presented in this paper to prove that this stadilet is not necessarily a local optimum. It
is also shown that a flaw in the original PSO causes the pesticl stagnate. A variation of the PSO
is described to address this flaw, and it is proven that thptadd?SO has guaranteed convergence to a
local optimum, but not a global optimum. The PSO is then frthdapted to provide algorithms with
global convergence.

Section 2 provides an overview of the original PSO. The maidifigs of published theoretical

studies are summarised in Section 3. Criteria for convergiess applicable to global and local stochastic
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search algorithms are discussed in Section 4. Section fda®a novel proof that the PSO is not a local
or global minimiser. The flaw in the original PSO algorithnesdribed analytically here for the first
time, is discussed in Section 6, and a PSO variation is pregevith guaranteed convergence to a local
optimum. Section 7 discusses the global convergence piepef the PSO, followed by the description

of globally convergent PSO variants in Section 8. Experitaleresults are summarised in Section 9.

2. Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a stochastic optititieaapproach which maintains a swarm of
candidate solutions, referred to particles[13, 8]. Particles are “flown” through an-dimensional
search space, with each particle being attracted towasdbeht solution found by the swarm and the
best solution found by the particle. The positio, of the i-th particle is adjusted by a stochastic
velocity v; which depends on the distance that the particle is from its lo@st solution and that of the

swarm. For the original PSO [13, 8],

Vijr1 = Vgt + 015.e(Yije — Tije) + G256 (jr — Tijt) 1)

Tijarl = Tijt+ Vijit1 (2)
forieZ,1<i<handjcZ,1 <j<n,where:
G1j,t = c1715,t aNdegj ¢ = carajiy
h is the total number of particles in the swarm
n is the dimension of the problem, i.e., the number of pararaatkthe function being optimised
c1 andcy are acceleration coefficients
4,256 ~ U(0,1)

x; + IS the position of particlé at time stept
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v+ IS the velocity of particle at time step
yi+ IS the personal best solution of parti¢leup to time steg
v is the best position found by the swarm, up to time gtep

In Equation (1) the social componenyt,, represents the best solution found by the swarm. There are
variations of the original PSO in which the global best mdetposition,y;, is replaced by aeighbour-
hood besposition which is dependent on the neighbourhood to whiehptirticle belongs, and is thus
denotedy; ;. This neighbourhood is usually defined in terms of the plafiéndex numbet, rather than
a Euclidean-distance based neighbourhood.

Different neighborhood topologies can be used to congtretinformation flow between particles.
A number of neighbourhood topologies have been investigdt2, 15, 14, 11], of which the star, ring,
and Von Neumann topologies have shown to be the most poplites. paper concentrates on the star
topology where the neighbourhood of each particle is thieeesivarm, with the resulting PSO algorithm
referred to as thgbestPSO.

ThegbestPSO algorithm is summarised in Figure 1.

1. Create and initialise m-dimensional swarmpP
2. While stopping condition is not true

() For each particlee 7,1 <i < h
i. If (f(Px;) < f(Py;)thenP.y;, = Px;
i. f(f(Py:) < f(Py))thenP.y=Py;
(b) For each particle € Z,1 <i<h
i. update the velocity using equation (1)
ii. update the position using equation (2)

Figure 1. The OriginagjbestPSO.

The remainder of this section summarises problems experikwith the original version of the PSO,

and some early variations to address these problems.
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2.1. Veocity Clamping

Initial PSO studies used = c» = 2.0. Although good results have been obtained, it was obsehadd t
velocities quickly exploded to large values. To combat #ffsct, it was proposed that each component
of the velocity should be clamped [11]. Later studies fourat the velocity clamping can be avoided by

using a constriction coefficient [7] .

2.2. InertiaWeight

The inertia weight was introduced by Shi and Eberhart tarictsdivergent behaviour [21, 10]. The
inertia weight,w, controls the momentum of the particle by weighting the bation of the previous
velocity, controlling how much the previous flight directiwill influence the new velocity. The velocity

equation becomes

Vij+1 = Wit + A1 (Yigt — Tijr) + 2505t — Tijie) 3)

Initial empirical studies of PSO with inertia have showntttiee value ofw is critical in ensuring
convergent behaviour [22, 9]. Far > 1, velocities increase over time causing divergent behaviou
so that particles fail to change direction in order to moveki@wards promising areas. For < 1,
particles decelerate until their velocities reach zeroyjled thalw > (¢; +¢2) — 2, as shown in [4, 1].

Empirical results have shown that a constant inertia ef 0.7298 and acceleration coefficients with
c1 = co = 1.49618 provide good convergent behaviour [9]. While static ireextalues have been used

successfully, adaptive inertia values have also showranbtie convergent behaviour [25, 30, 6, 23, 27].

3. Particle Trajectories

Early published theoretical analyses of the PSO have ctrated on analyzing the behavior of particles
by studying particle trajectories. Ozcan and Mohan coredfiufdom their studies that particle trajectories
follow periodic sinusoidal waves [16, 17].

Clerc and Kennedy provided a theoretical analysis of darti@jectories to ensure convergence to a
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stable point [7],

o1y + 2y

1+ o @

The main result of Clerc’s work is the introduction of the stiittion coefficient and different classes
of constriction models. The objective of this theoretigalkerived constriction coefficient is to prevent
the velocity from growing out of bounds, with the advantaggt ttheoretically, velocity clamping is no

longer required. As a result of this study, the velocity dmumechanges to [5, 7]

Vij i1 = X[Vijt + 0156 (Vijr — Tije) + 0256 (Yije — Tije)] (5)

wherey is the constriction coefficient calculated as

2K

oo VP 1

with ¢ = ¢1 + ¢2 > 4 andk € [0,1]. The constank controls the rate of convergence. Forx 0,

(6)

rapid convergence to a stable point is obtained, whitexa1 results in slow convergence. The reader is

referred to [7] for a more detailed derivation of the comsimn coefficient and models.

Van den Bergh and Engelbrecht extended the analysis of desthaperministic PSO system to also
include the inertia term [1, 4]. This was also independedtye by Trelea [26]. The analysis indepen-

dently arrived at the conclusion that particles convergdégpoint

(1—a)y +ay ()

wherea = <2~ € [0, 1]. The same result has been derived in [26, 29].

If {xt}j;g denotes the sequence of positions for a specific partiae,dl that the current theoretical
analyses have shown is that

lim x;,=(1—a)y +ay (8)

t——+o00

From this, nothing can be inferred about the optimality & ploint(1 — a)y + ay.
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The rest of this paper is devoted to investigating whetherdfiginal PSO converges to a local
minimum. That is, to show whether the sequefieg},"% converges tec’; in region B C S, whereS is
the feasible space, i.e., if

tilgrnoo Xt =Xp (9)

wheref(x};) < f(x), for all x € B. Itis also shown that, for the original PSO,
r (t 1i£rn X # x*> >0 (10)

wheref(x*) < f(x), for all x # x*.

4. General Conditionsfor Convergence

The stochastic nature of the particle swarm optimiser makesore difficult to prove (or disprove)
properties like global convergence. Solis and Wets hawdiesiithe convergence of stochastic search al-
gorithms, most notably that of pure random search algosttproviding criteria under which algorithms
can be considered to be global search algorithms, or mayedy $earch algorithms [24]. This paper uses
the definitions from [24] to study the convergence charéaties of the PSO. For convenience, some of

these definitions are reproduced below.

4.1. Simple Random Search

The convergence conditions are based on the following prmeland the conceptual algorithm described

in Section 4.2:

Problem 1. Given a measurable functiofi : R” — R andS C R". The objective is to find a point

x € § which minimises on S.

This provides a definition of what a global optimiser mustdute as output, given the functigh

and the search space
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4.2. Conditionsfor Local Convergence

It is sufficient to show that a random search algorithm willegtst converge to a local minimum if the
algorithm satisfies thalgorithm conditionand theconvergence conditionThe algorithm in Figure 2

serves as a conceptual simple random search algorithm.

1. Start with an initial solutionzy € S, and set = 0.
2. Generate a vectds from R™, usingu; as probability measure.

3. Setz; 1 = D(z,&), chooseu,, 1, sett :=t + 1, return to step 2.

Figure 2. Simple Random Search Algorithm.

Referring to Figure 2D is a mapping that combines the new samplewith the current solution,
z;. The algorithm condition, presented next, stipulates ttiainew solution suggested [y is to be no

worse than the current solution.

Algorithm condition: The mappingD : S x R" — S should satisfyf (D(x,¢)) < f(x) andif € S,
thenf(D(x,£)) < f(£).

Let M; be the support of the probability measurg That is, M; is the smallest closed subset of
R™ with measure 1 undei;. Almost all random search algorithms are adaptive, witliepending on
the previous solutiony, . .., x;_1 generated by the algorithm. The are thus viewed as conditioned
probability measures. Let be the Lebesgue measure of a set. For a local search metkod, \hth
bounded suppot/; have, for all except a possibly finitem (S N M;) < m(S).

To avoid searching for an element in a set of null measuresghech will be for the essential infimum
of f. The algorithm will thus be said to have found a solution iisitable to generate a point in the

optimality region R., defined as

Re={z€S|f(z) <t¢+e} (112)
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wherey denotes the essential infimum pbn S, ande > 0.

Convergence condition: Sufficient condition for convergence to at least a local mimin: For any

x; € S there exists & > 0 and an0 < n < 1 such that
pe(dist(x41, Re) < dist(xy, Re) — 7 0rxy € Re) > (12)

Therefore, an algorithm is a local optimisation algoritlra hon-zerop can be found such that at every
step the algorithm can mowecloser to the optimality region by at least distanc@r x is already in the

optimality region with a probability greater than or equaht

Theorem 4.1. Local Search: Assume thaf is a measurable functiorf is a measurable subset Bf*
and both the algorithm and the convergence condition foallsearch are satisfied. Ldtk;};°, be a

sequence generated by the algorithin, Then,
tlim P(x; € R) =1 (13)
The proof of this theorem can be found in [24].

4.3. Conditionsfor Global Convergence

In the case of a global search algorithm, the following cbadiis sufficient to prove convergence to a

global minimum:

Convergence condition: Sufficient condition for convergence to a global minimumr &oy (Borel)

subsetd of S withm(A) > 0,

[e.9]

T = m(4) =0 (14)

t=0

whereyu(A) is the probability ofA being generated by;.

This convergence condition means that for any suliset S with positive measuren, the probability
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of repeatedly missing the sdtusing random samples (e.qg., )% must be zero.

Theorem 4.2. Global Search: Assume thaf is a measurable functioit is a measurable subset&f,
and the algorithm condition and convergence condition flobg! search are satisfied. ffx;},-% is a
sequence generated by the algorithbh,then

lim P(x; € R.) =1 (15)

t——+o0

The proof of this theorem can be found in [24].

5. Local Convergence of PSO

This section tests the hypothesis that the basic PSO is hdptieniser. The proof first considers uni-
modal optimisation problems. The objective of the proobishow whether the basic PSO satisfies both

the algorithm and convergence conditions as given in Sedti?.

5.1. Unimodal Optimisation Problems

Let x, defined as

xo = argmax{f(x;)}, i € Z,1 <i < h, (16)

be an initial position which represents the worst partinléhie swarm. Note that minimisation problems
are considered for which the worst particle yields the Isrgesalue of all particles in the swarm. Define
the compact set,

Lo={xe&: f(x) < f(x0)} (17)

to be the set of all particles witfi values smaller than or equal to that of the worst particlétioos x.

From the velocity and position equations (1) and (2), fure) (as used in the algorithm condition) is
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defined for the PSO as

X " %)) > £
D(§051s) = Vi if f(g(xit)) > f(It) 18)

g(xit) I f(g(xis)) < f(¥e)

whereg(x; ;) denotes the application gf which is the function performing the PSO updates, defined in

Equation (19).

The definition ofD in equation (18) satisfies the algorithm condition, sineesbquencéf(y:)}-,
is monotonic by definition. This sequence represents thigpositions amongst all the positions that all

the particles visited up to time stép

This proof views the computation of the valueaf;,; as the successive application of three func-

tionsgy, go andgs. Each function adds a term to the previous result. That is,

X1 = 8(Tir) = 81(Xip) + 82(Xit) + 83(Xi 1) (19)
where
g1(Xit) =Xt +wvit (20)
and
g2(Xie)i = cryi(Yije — Tije), JEL,1<j<n (21)
93(Xie); = caroyi(Uje — xije), JEL,1<j<n (22)

whereg;, (z;,.); denotes thg-th dimension of the vector functiogy,.

Now, from the definition of the compact si (refer to equation (17)), and the assumption that all
the particles are initially irLg,

Yi,0:Xi0 € Lo (23)

and therefore alsgyy € Lo. Letg? (x;+) denoteN successive applications gfon x; ;. The particle
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will follow a convergent trajectory under the following atitions:

Convergent parameter region: Let¢; = ci1r; andgs = cors, and let

_ltw—d1 -2ty

A1 > (24)
with
7:\/(1—|—w—¢1—¢2)2—4w (26)
Forall 0 < w < 1and0 < ¢1, ¢ < 2, if
ru)>((2512i¢2)_17

then

max{A ], A} < L.

For a detailed discussion of this convergent parameteomegee [4, 1]. Recently, Poli pointed out that
this region only guaranteesder-1 convergence, that is, convergence of the meaty] [19]. Poli has
shown that the region that offeasder-2 stability, that is, the region for which the standard dewiaf

x; tends to zero, is a large subset of the convergent regiorifigoeabove. In particular, the common
choice ofc; = ¢o = 1.4961798 andw = 0.729844 falls within the order-2 stability region. In addition
to correct parameter choices, Poli has further shown tlukre? stability of the stochastic PSO requires

thaty; ; = y;. This additional constraint will be revisited after Lemma 5elow.

Lemmab.1. For all w, ¢; = c¢171 and ¢y = cors falling inside the convergent parameter region, there

exists a finiteV and a positive: such that, for allk > N,

lg" (xi0) — " (xi4) ]| < €
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Proof: The trajectories of the particles will now be considereddaingle particle only, thus the
particle subscript will be omitted. Furthermore, the indiwal dimensions are independent, thus a one-
dimensional notation will be used here. In [4, 1] it was shawat the deterministic trajectory of a

particle is described by

xr =k + kg)\tl + /{?3)\3 (27)
where
[ G1Y + h2y
, = YT ey
¢1 + 92
P Aa(To — 1) — 21 + X2
y =
y(A1 —1)
i M(z1 — 20) + 21 — 22
3
y(A2 — 1)

andzy = x(0), 1 = z(1), andze = (1 + w — ¢1 — P2)x1 — WxY + G1Y + P27-

From equation (2),

Tip1 — Ty = Vg1 (28)
Therefore,
UNt1 = (TN41—2N)
=k R AT B AT — (B R 4 kA

= (k2AY (M1 = 1) + ksAy (A2 — 1))

(29)

Note thatmax{||A1],]|X2]|} < 1, so thatlimy ;o A = 0 andlimy_.; « AY = 0, which implies that

there exists a finit&V such that

(ko AN = D)+ ks Y (Mo = 1)) < ¢ (30)
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for anye’ > 0. Note that this holds for every dimension of the vectothus

lg" (xi) — " (xig)l| = [Vesa] <e. VE=N

This is sufficient to show that the particles will stop movindhe deterministic version of the PSO. The

next two lemmas indicate where the particles will come to. res

Lemma5.2. The global best particle will converge onto the positian

Proof: Let r represent the index of the global best particle. Thef y.. From Equation (27) it is

clear that
. o1y + P29
1 =k = -T2 31
Jm we =k = =5 (31)
This holds for each dimension &, so that
. P1yr + 2y .
lim x,;=———"= = 32
tofoo” b1+ P2 Y (32)
|

This result applies directly to the deterministic versidrihe PSO. Using the recent discoveries of Poli
[19], this result can directly be extended to the stochastie, because, = y. This result will now be

extended to the other patrticles.

Lemmab5.3. All particles1 < i < h will converge onto the positiof, so that

tlg—noo Xit =Y
Proof: Lemma A.1 in Appendix A shows that there is a non-zero prditalthat a particle: will
move closer tgy by at least a distance > 0. This satisfies the localonvergence conditiogiven in

Section 4.2.
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Step 2.a.of the PSO algorithm (refer to Figure 1) ensures ghatill be updated if the new position,
X; ++1, yields a smaller value irfi. This implies that thalgorithm conditionof Section 4.2 holds, where

x; 41 Substituteg andx is replaced withy;.

Application of Theorem 4.1 then implies thiatn, .., y;+ = y. In the deterministic version of the
PSO, direct application of Lemma 5.1 implies that; ., x;; = y;; = y. Becausdim;_, o yi; =
vy, the approach of Poli [19] can be applied to extend this tdsuthe stochastic case to infer that

limy 4 oo Xit=Yit=Y- n

The lemmas above identify a defect of the basic PSO algorithhere exists states in which the
particles will stop moving, regardless of whether the gldimst particle is located at a minimiser. One
trivial example is the state where &) = y; = y,Vi € Z,1 < i < h. In this state, no further progress
can be made and the search should be terminated. This proélsmnempirically observed in [28], is

explained in more detail next.

Consider the components gfseparately. Application af, can be viewed as sampling a point from
a distribution with hyper-rectangular suppdi;, as illustrated in Figure 3. The side lengthsldf ,
depend on the distance between andy; ;. From Lemma 5.3, this distance tends to zero, since in the
limit, x; ; = y;+ = ¥+ which violates the convergence condition for local seasafice the probability
that a point is sampled closer to the optimality regidnbecomes zero befoe necessarily reachds..
The same argument appliesgg andy. The basic PSO is therefore saiddonverge prematurelyor

stagnate

Examples of states that converge prematurely can easilgrmracted. Consider a two-dimensional
search space and a swarm with only two particles. One of ttieles, say particle 1, will be the global
best particle. Let the symbotg throughas andpq, po denote arbitrary constants. Then the swarm will

stagnate whenever it reaches the following state:
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Figure 3. A depiction of the hyper-rectangular support & $pace sampled by the functign. Note thaty;
need not be included in/;”, — this depends on the value of.

Particle 1 Particle 2
V1 = al(O, 1) Vo = ag(O, 1)
x1 = (p1,p2) x2 = (p1,p2) + a3(0,1)

y1 = (p1,p2) + a4(0,1)  y2 = (p1,p2) +a5(0,1)

This is the state where all the particles are constrainedawemnly along one of the axes of the search
space. There is a non-zero probability that the swarm caadlr this state, or it could even have been
initialised to this state. If the minimiser of the functiagriot of the form(py, p3), whereps is an arbitrary
value, then the swarm will not be able to reach it. The fundaaigroblem here is that all movement in

the swarm is relative to other particles in the swarm.

In summary, there exists initial states in which the origid80 algorithm can start that will lead to
a stagnant state in a finite number of steps. By using a larg@earuof particles, the probability of be-
coming trapped in such a stagnant state is reduced drathatité& shown experimentally in Section 9,
however, that with only 2 particles the swarm can rapidlygstde. This supports the theory that the
basic PSO algorithm is not a local search algorithm, siniseniot guaranteed to locate a minimiser from

an arbitrary initial state.
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6. Guaranteed Convergence PSO

A solution to the problem of stagnation is to change the vslagpdate equation for the global best
particle to force a position change of the global best. Opeaaxh to achieve this was developed by Van
den Bergh and Engelbrecht [3], referred to as the guarameedergence PSO (GCPSO). Letbe the

index of the global best particle at tingso that

™2 argmin f(y;), i € Z,1 <i <h (33)

2

which, from the definition of,, implies that

Yr = yt . (34)

In the absence of an explicit time index, it is assumed fhatnd thusy, refers to the most recent
value of the global best position of the swarm. Recall that;) is monotonically non-increasing on a
minimisation problem.

The original PSO algorithm applies equation (3) to all of faeticles to compute the velocity update
for each particle, which in turn is used to update the pasitibeach particle using equation (2). In the

GCPSO, the objective is to change the update equation fgrtbalglobal best particle (particle to
Trjir1 = Yj¢ + wWorje + pe(l — 2ry). (35)

This new position of the global best particle thus has theems: the first term which ensures the new
position is calculated relative to the current global bestition, the second term which carries over
the momentum of the global best particle, and the third tetmiclhvsamples a point from a uniform
distribution on a hypercube with side lengths; the value ofp is defined below. Provided thatis
strictly greater than zero, this update equation ensuedghk global best particle can never stop moving

completely.

All that is required to implement the GCPSO is a new step iratherithm that computes a different
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velocity update for the global best particle. Thus, instefdsing equation (3), the velocity update of

the global best particle is computed using

Vrjitrl = —Trjt + Uit + worjg + pe(1 — 21). (36)

Observe that substitution of equation (36) into equatigryi@ds equation (35). The scaling factaris

defined as )
2p¢  if #successes > s,
Pi+1 = 0.5p; if #failures > f.andp; > e, (37)
Pt otherwise

wheree,, represents the smallest allowable valuepef typically set to machine precision. Assum-
ing minimisation, a ‘failure’ occurs wherf(y:) > f(y:~1), and the counter variablg failures is
subsequently incremented (i.e., no apparent progress d&s fnade). A success then occurs when
f(y¢) < f(y+—1). Upon a success, the failure count is reset to zero; coryergeen the failure count

is increased, the success count is reset to zero. The camteshold values were fixed # = 5 and

Se = 0.

Equation (35) represents the action of sampling a point fadmypercube with side lengti2e cen-
tered aroung + wv. Let M}, denote this hypercube, and Jet denote the uniform probability measure
defined on the hypercub®},. Figure 4 illustrates how a new sampie;.,; is generated. Stagnation is
prevented by ensuring that > 0 for all time steps. Before proving that the GCPSO is a locatde

algorithm, a few details regarding. ;, must first be discussed.

Note thaty, is always inLo. It is possible, however, that, ;, ¢ Lo, due to the cumulative effect of
a growingv vector, so thag + wvy ¢ Ly. One of two scenarios now unfoldg, € M or §i ¢ Mj.
In the first case, this means that a point arbitrarily closg.tmay be sampled, including; itself. Since
Vi € Lo, this means that[M; N Ly] > 0. The second case implies thais such that\/;, does not
include y,. This happens when,; points outwards fronL,. Sinceyy is only updated when a better

solution is found, and from the definition @fy, it is therefore clear that none of the points outside of
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Figure 4. The hyper-cubic suppa¥f;, of the sample spage;, centered around the poifi, + wvy, as defined
by the position update step of the GCPSO. The prjnt; is an example of a point sampled by the new velocity
update step.

Ly will be selected to replacg,. On the other handx., is able to move outside dfy because of the
residual velocityv, ;. Assume for the moment thatis insignificantly small. Equation (3) shows that,
if w < 1, then clearly||x;++1 — J&|| < ||x-+ — ¥x||, assuming thak,; # . After a finite number
of time stepd, x, .4, will be in Ly once more. This implies that[A/,; N Lo] > 0, so that a point

arbitrarily close tgy, can be sampled once more.

Both cases imply that a new sampled point arbitrarily clas¢,;t, and thus inLg, can be gener-
ated. Note that the second case only comes into play Wwhea close to the boundary df,. In low-
dimensional search spaces, the first case, whérec L(, can be considered the norm, however, the
opposite may happen more frequently in high-dimensionatckespaces. This would seem to indicate

that the efficiency of the algorithm will deteriorate in highmensional search spaces.

The existence of a non-degenerate sampling volumeith supportM;, has thus been shown for
the GCPSO algorithm. Using this fact, it is now possible tosider the local convergence property of

the GCPSO algorithm.

If it is assumed thaf is compact and has a non-empty interior, tlignwill also be compact with a
non-empty interior. Further,, will include the essential infimum, contained in the optiityadegion R.,
by definition. NowR, is compact with a non-empty interior, thus a bBll centered at’ contained in
R, can be defined as shown in Figure 5. Pick the prirt argmax, {dist(c/,x)|x € Ly}, as illustrated

in Figure 5. LetB be the hypercube centeredcatwith sides of lengtt2(dist(c’, x') — 0.5p).
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2p

Figure 5. The intersectioff N B, with B centered or’ € R..

Let C be the convex hull ok’ and B’ (see Figure 5). Consider a line tangenf2q passing through
x’ (i.e., one of the edges @f). This line is the longest such line, faf is the point furthest fronb’.
This implies that the angle subtended}yis the smallest such angle of any pointiig. In turn, this
implies that the volumé&' N B is smaller than that af” N B for any other convex hull’ defined by any

arbitrary pointx € L.

Then for allx in Lg

urdist(D(y,x,), Re) < dist(x, Rc) — 0.5p] >n=p[CNB]>0 (38)

wherepy, is the uniform distribution on the hypercube centered,awith side lengtt2p. It was shown

above that the modified PSO can provide such a hypercube.

Sinceu[C' N B] > 0, the probability of selecting a new poigtso that it is closer to the optimality
region R, is always non-zero. This is sufficient to show that the GuaethConvergence Particle Swarm

Optimiser (GCPSO) complies with the convergence condftiohocal search, because

1. The GCPSO can always generate a sample around a pdigf &ssumingy, y; € Lo;
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2. Given any starting point iy, the GCPSO algorithm guarantees a non-degenerate sampling

ume with a non-zero probability of sampling a point closethi optimality region R..

The GCPSO algorithm thus satisfies both the algorithm andergance conditions for local search.
This completes the proof that the sequence of va{ges ;> , generated by the GCPSO algorithm
will converge to the optimality region, under the consttsiof a local optimisation algorithm, regardless

of the initial state of the swarm.

6.1. Functionswith multiple minima

It was assumed above thia§ was convex-compact. A non-unimodal function, witlncluding multiple
minima, may result in a non-convex geg.

Of particular interest would be the class of functions treat be decomposed into a set of convex-
compact subsets, each subset containing only one locaimmmi By Lemma 5.3, it is clear that all
the particles in the swarm will eventually converge onto pihsition of the global best particle. In the
GCPSO, the global best particle, in turn, is guaranteed ngarge on a local minimum — there is just
no guarantee that this will be any specific minimum, for exina global minimum.

The convergence proofs presented above do not provide sigjtnnto the behaviour of the GCPSO

on functions that can not be decomposed into such convexacnsubsets.

7. Global Convergence of PSO

In Section 5 it was shown that the original PSO is not guasghte converge on a local minimum. From

this, the following trivial proof follows:

Lemma7.1. Letx* be the global minimiser of on S, and letx; be the sequence of proposed solutions

generated by the original PSO algorithm. THeflim;_, ;. x; # x*) > 0.

Proof by counter-exampleAssume a unimodal functiorf, with its global minimum located in the
convex-compact setl,y, as defined in Equation (17). As shown in Section 5, the caighSO may

converge on a point # x*, and is thus not guaranteed to converge on the minimum lbdate,. B
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In contrast with the original PSO, it was shown in Sectiond@ the GCPSO is guaranteed to con-
verge on the local minimiser of. It is stated without proof that the GCPSO is not able to guaea
convergence to a global minimiser, owing to its strong lazaivergence properties. Instead, several
new algorithms are constructed in Section 8 in a way thatajiees convergence onto a global min-

imiser.

8. Stochastic Global PSOs

In Section 6 it was proved that the GCPSO algorithm conveogea local minimiser with probability
1, as the number of iterations approaches infinity. It is {esgo extend the GCPSO to become a
stochastic global search algorithm, so that it will locdte global minimiser of the objective function.

Two algorithms with this property are introduced below.

8.1. Random Particle Approach

The simplest way to construct a PSO-based global searchithigois to directly address the global
search convergence condition. This can be achieved by @ddimdomised particleso the swarm.

Particlei can be made a randomised particle by simply resetting itdigodo a random position in
search space periodically.

Any number of particles in the swarm can be made random festibut the optimal ratio of random
versus normal particles depends on the swarm sizes,lgf denote the number of random particles in
the swarm. One possible implementation of the random pedigproach is outlined in Figure 6. This
implementation resets a specific particle’s position ongre s,....4 iterations, allowing the particle to
explore the region in which it was initialised before reiggttit again. The resulting algorithm is called
the Randomised Particle Swarm Optimiser, or RPSO.

It is trivial to show that the RPSO algorithm is a global skaatgorithm. The personal best position
update equations are unaltered, thus the algorithm cleatisfies the algorithm condition, as was shown
for the original PSO in Section 5.1. During each iteratiom @article assumes a random position in

the search space. The sample space from which this samptavis thas support/, = S, so that
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Create and initialise an-dimensional PSO P
Sidw < 0
repeat:
if Sige # 7
then P.x,,, = random_vector()
Side = (Side + 1) modulo s;4pd
for each particle € [1..s] :
if f(P.x;) < f(Py:)
then Py; = P.x;
if f(Py:) < f(P.y)
then P.y = P.y;
endfor
Perform PSO updates dhusing equations (1)-2)
until stopping condition is true

Figure 6. Pseudo code for the RPSO algorithm.

global search algorithm.

8.2. Multi-start Approach

constructed as follows:

1. Initialise all the particles to random positions in thared space.

minimiser, and return to step 1.

be used to determine whether the GCPSO algorithm has cauerg

Maximum Swar m Radius: The maximum swarm radius can be computed directly using

r:me—XTH,mEZ,lgmgh

23

m[My] = m[S]. This satisfies the global search convergence conditiofysbheorem 4.2 this is a

A different method of extending the GCPSO algorithm to beeanglobal search algorithm can be

2. Runthe GCPSO algorithm until it converges on a local miggm Record the position of this local

The above algorithm is referred to as the Multi-start PSO $@. There exist several criteria that can
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where
|%m — %7 > ||xi —%-|, Vi€ Z,1<i<h
The normalised radius,

. o
O diam(S)

can then be used to decide how close the particles are todbaldlest particle. The analysis in
[1, 4] (also refer to Section 5.1) suggests that the swargnstas when all the particles coincide
with the global best particle in search space. Whghp,, is close to zero, the swarm has little
potential for improvement, unless the global best pariglstill moving. Alternatively, a single

particle may still be wandering around while all the othertipbes have already coincided with
the global best particle. Therefore this method is not rhlespecially since it does not take the

objective function values into account.

It was found empirically that re-starting the swarm whep,,, < 10~% produced acceptable
results on a test set of benchmark functions. Clearly, tatgesholds will increase the sensitivity
of the algorithm, but note that re-starting the swarm togdently will prevent it from performing

a fine-grained search.

Cluster Analysis. A more aggressive variant of the Maximum Swarm Radius ntetten be con-

structed by clustering the particles in search space. Tustesing algorithm works as follows:

1. Initialise the cluste€ to contain only the global best position

2. All particles such thaflist(x;, C') < rinesh are added to the cluster

3. Repeat step 2 at least 5 times.
The ratio|C'|/h is then computed, whet€’| denotes the number of particles in the cluster — note
that only a single cluster is grown. If the ratio is greatartsome threshold, say 0.6, then the

swarm is considered to have converged. Note that this méthethe same flaws as the Maximum

Swarm Radius technique, except that it will more readilyidiethat the swarm has converged.
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Empirical results obtained on a small set of test functioicated that a value 0fy e, = 107°
produced acceptable results; the swarm was declared tabaverged when more than 60% of the
particles were clustered around the global best particéndJa ratio of more than 60% decreases
the sensitivity of the algorithm, bringing with it the pdsidity of failing to detect stagnation early
on. Largerrinresn Values will increase the sensitivity, similarly to the @sponding threshold

value in the Maximum Swarm Radius technique.

Objective Function Slope: This approach does not take into account the relative ipasitof the
particles in search space; instead it bases its decisietysmi the rate of change in the objective

function. A normalised objective function value is obtalr®y using

fratio = f(yt)

Note thatf, ., is undefined iff (y) = 0. However, if the global minimum value gf is in fact

0, then the algorithm has already found the global minimundl, there is no need to restart the
swarm. Note that this normalisation may cause problemsaufaetfons that do not have a function
value of0 at their global minima. All of the test functions examinediection 9 have this property,
though. If this normalised value is smaller than some tholesta counter is incremented. Once
the counter reaches a certain threshold, the swarm is adgorhave converged. This approach is
superior to the other two methods mentioned first in thattilaty determines whether the swarm
is still making progress, instead of trying to infer it froinet positions of the particles. There
is one remaining flaw with this approach, though. If half of fharticles (including the global
best particle) are trapped in the basin of some minimum, therdalf may yet discover a better
minimum in the next few iterations. This possibility can lmeiotered by using one of the first two

methods to check for this scenario.

The optimal threshold for thé..;;, value depends on the range of the objective function vahses,
well as the machine precision of the platform on which theatlgm is implemented. Empirical

results indicated that a value d®—'° works well. Smaller thresholds increase the sensitivity of
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Create and initialise an-dimensional PSO P

repeat:
it f(Py) < f(2)
thenz = Py

if P has converged
then re-initialise all particles
for each particle € [1..s] :
if f(Px;) < f(P.yi)
then Py; = P.x;
if f(Py:) < f(P§)
then P.y = Py;
endfor
Perform PSO updates dhusing equations (1)—(2)
until stopping condition is true

Figure 7. Pseudo code for the MPSO algorithm.

the algorithm, possibly causing the algorithm to mistakeidga of slow progress for stagnation.

Figure 7 is the outline of an algorithm making use of the rrstitirt (or restart) approach. Any of
the convergence criteria mentioned above can be used. yiiesof algorithm is called the Multi-start
Particle Swarm Optimiser (MPSO).

The MPSO algorithm is a global search algorithm, a propdré will now be proved using The-
orem 4.2. The MPSO satisfies the algorithm condition, siyileo the RPSO in the previous section.
To satisfy the global search convergence condition, the ®Rfaist be able to restart an infinite number
of times. This requires that the GCPSO algorithm converges a local minimum, which was proved
in Section 6, and that the convergence-detection mechasusisequently detects this. The Maximum
Swarm Radius and Cluster Analysis methods indicate thaswlam has converged when the particles
are arbitrarily close to the global best positigh, Lemma 5.3 has shown that the particles tend to the
statex; = y; = y. Since the swarm is guaranteed to reach this state, thesednvergence criteria
will always detect convergence and trigger a restart. Theddise Function Slope criterion will detect
convergence whenever the valuefdfy) stops changing. This state is guaranteed, upon discovay of

local minimum, by the local convergence property of the GOPBhis implies that, regardless of the
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convergence-detection criterion used, the MPSO algorithifrbe able to re-initialise the positions of
all the particles an infinite number of times, if it is allowgdrun for an infinite number of iterations.
The re-initialisation process assigns to each particles#tipa sampled from the whole search space
S. Since the support of this sample spadé,, is equal to the search space|[M;| = m[S]. This
satisfies the global search convergence condition, whickinméhat, by Theorem 4.2, the MPSO is a

global search algorithm.

8.3. Rateof Convergence

The rate of convergence of a stochastic global method l&&RSO is directly dependent on the volume
of the sample space, since the number of points in the sampabe grows exponentially with the dimen-
sion of the search space. This implies that the MPSO algonitiil easily find the global minimiser of a
2-dimensional objective function in a relatively small roen of iterations. If a function of comparable
complexity in 20 dimensions is considered, the algorithrhtake significantly longer to find the global
minimiser. An indication of the severity of the problem camndibtained by considering the following
simple example. Led be the side length of a hypercube defining the optimalityaedi.. The volume
of the optimality region is thed™, wheren is the number of dimensions. If the search sp&ds a
hypercube with side lengthisthen its volume will bd™. The probability of generating a sample in the

optimality region in the first iteration of the algorithm sasning a uniform distribution function aofl, is

a _ (d\"
=\

Since the optimality region is certainly smaller than tharsk space itself, this implies thét! < 1, so

lim | = =0
n—-4oo l

If a pseudo-random number algorithm is used to generateathples used by the search algorithm, and

then

that

the period of the generator is sufficiently large, then theang process will be equivalent to sampling

without replacement. The probability of sampling from thmimality region will thus increase slightly
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on successive samples, but this will not have a significapaghsince the number of points in the search
space still grows exponentially with the number of dimensiorT his implies that the ability of the MPSO
to find the global minimiser of a function in a finite number t&frations deteriorates very rapidly as the
number of dimensions is increased.

The stretching technique proposed by Parsopoedad. [18] uses the equivalent of a MPSO using
the original PSO instead of the GCPSO for the local searctpooent of their algorithm. They do not
provide any proofs of global convergence, but they presemirical results to support the claim that
their method is global. Their algorithm modifies the objestiunction, and re-initialises the particles
once a local minimiser is discovered. It is important to isslthough, that their algorithm’s ability to
locate the global minimiser comes from the periodic religgation, and not from the transform that
they apply to the objective function. This means that thigjodthm is subject to the same limitation
that the MPSO suffers: the curse of dimensionality. The gtasithey present are all restricted to two
dimensions, which means that the re-initialisation metiwdidhave a good chance of finding the global
minimiser within a small number of iterations. These resalte misleading, since the algorithm will

perform significantly worse on, say, 100-dimensional peoid.

8.4. Stopping Criteria

While it is relatively simple to design a stopping criterifm a local search algorithm, it is rather more
involved to do so for a global search algorithm, unless tHeevaf the objective function in the global
minimiser is known in advance. To illustrate: when the GCREforithm fails to improve the value of
f(y) over many consecutive iterations, it is relatively safegsuane that it has found a local minimum.
When the MPSO exhibits the same behaviour, that is, it failsnprove on the best solution discovered
so far after, say, 100 restarts, no such conclusion can lvendras illustrated above, the probability
of sampling a point from the optimality region decreasesoeeptially as the number of dimensions
increases. This means that the number of restarts requitfiedebgiving up must grow accordingly, as

will now be shown.

Solis and Wets provided some guidelines for choosing theeconumber of iterations required for a
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stochastic search algorithm to discover the global mirémig4]. For example, they defined the number

of iterations required to reach the optimality regidv,, with at least probability — X\ as follows:
P[yk¢Re]§)\, Vk > N,

Let k denote the number of restarts in the MPSO algorithm. Theavéluem is known so thad <
m < ug[R] for all k, then
Plyr ¢ RJ < (1 —m)*

In A
= {mw

yields the required property, since when> Ny, thenln \/In(1 — m) < k, becausél — m)* > .

Choosing an integer

Note that this calculation requires that a lower bounds known for ;[ R.], which implies that the size
and shape oR. is known in advance. If the example from Section 8.3 is carih we can use the value
m = (d/1)" as such a lower bound. This implies that the number of imatrequired to reacR, with

probability1 — \ is
In A

S (9)")

However, In (1 — (%)”) — 0 asn — 4oo0, which means thatVy, — +oo, confirming our earlier

Ny

\4

suspicions.

9. Experimental Results

This section contains some brief results regarding thewehaf the original PSO and the GCPSO, as

well as the stochastic global PSOs. There are two main thémésvere investigated:

1. Does the guaranteed convergence of the GCPSO trangkatmproved performance on unimodal
and/or multimodal functions, compared to the original P$0® does the swarm sizé) influ-

ence the results?
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2. Do the proposed global variants of the PSO (Section 8.pydwe on the performance of the

GCPSO on multimodal functions?

To address these questions, the following functions weed t& testing:

Sphere:
folx) = a3 (39)
j=1
Rosenbrock (or banana-valley):
n/2
fr(x) =) [100(zg; — x3;_1)” + (1 — x9;-1)7] (40)
j=1
Quadric:
n i 2
j=1 \k=1
GeneralisedRastrigin:
fa(x) = (aF — 10 cos(2mx;) + 10) (42)
j=1
Generalisedsriewank:
5”]’
fa(x) = 4000 Zx - H cos \/3) (43)
Schwefdl:
ij sin(y/|x;]) 4+ 418.9829n (44)
Ackley:
fG(X) _ _20670.2 1 ;l 1 J e'rlz Z 1 cos(2mx ) +204¢ (45)

This set of functions contains representatives of both tiimadal and multimodal objective function
classes. Table 1 indicates the dimensions for which thetifums were evaluated, as well as the size of

the search domain.
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Table 1. Parameters used for all experiments.

Function n Domain

fo 30 [-100,100]

f1 30 [-2.048,2.048]
/3 30 [-100,100]

fa 30 [-5.12,5.12]

I 30 [-600,600]

/6 30 [-500,500]
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The details of the PSO algorithms that featured in the erpants are provided in Sections 9.1 and

9.2. To provide an approximate idea of PSO performanceivel&d evolutionary algorithms, results

obtained with a genetic algorithm were included in the glamimisation experiments of Section 9.2.

The GA employed a binary coding scheme with 16 bits allocédeshch variable. A two-point bitwise

crossover operator was used alongside a single-bit mataperator. The crossover rate was set to 0.6

and the mutation rate to 0.02. The population size was fixdd@tmembers, with selection pressure

exerted using a fithess-proportionate model. A one-eleraldidt strategy ensured that the algorithm

retained the best solution over all generations. This fipesmnfiguration corresponds to the GA used

by Potter in his CCGA experiments [20], and was included befqgreserve continuity with a previous

comparison between a genetic algorithm and a PSO [2].

9.1. PSO vs GCPSO

The two algorithms used for the first experiments are asa@io

PSQ The original PSO algorithm, using equations (3) and (2).

GCPSO The madified PSO, using equations (36) and (35) to updategltfteal best particle, while

using equations (3) and (2) for all the other particles. Tiitical thresholdss. and f., defined in

equation (37), were both set to 5.

Both algorithms were configured to use parameter settings ef co = 1.4961798 andw = 0.729844,

since these values lead to rapid convergence [9, 4]. Thensware, h, was varied from 2 to 20 in
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Table 2. Mean function values of global best particle after 10° evaluations, over 500 simulations.

Fn

PSO (h=2)

GCPSO (h=2)

Jo
fi
fa
I3
Ja
Is
fe

Fn

3.97e+04 + 9.87e+03
1.45e}-03 £ 8.00et-02
8.60et-04 + 4.96e+-04
2.93e+02 + 4.29e+01
3.53e+02 + 9.18e+01
8.82e+-03 £ 7.63e+-02
1.91e+01 + 6.95e-01

PSO (h=20)

4.59e-320+ 0.00e+00
3.58e-01 £ 3.93e-01
6.64e-13+ 1.64e-12
1.72e-02+ 4.11et01
1.17e-02+ 1.41e-02
7.31e-03 £ 1.41e+03
1.83e-01 + 6.40e-01

GCPSO (h=20)

Jo
f
f2
I3
fa
I5
f6

1.92e-93 + 4.30e-92
1.15e-02 £+ 2.53e-02
4.27e-15+ 5.68e-14
6.91et-01 £+ 1.85e+-01
1.16e-01 + 2.86e-01
4.50et+03 + 6.16et+02
3.47e+00 £ 1.55e+00

1.28e-191+ 0.00e+00
3.86e-02 & 4.45e-02
1.12e-21+ 1.12e-20
7.42e-01 £+ 1.93e+01
2.86e-02 + 8.53e-02
4.85¢-03 & 6.68e+-02
3.14e-00 £ 1.85e+00
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increments of 2 to investigate the effects of swarm size agrsttion. In order to keep the comparisons
across swarm sizes fair, the total number of function eviming was kept constant 2t 10° evaluations,
which implied that the number of generations was reduceldeaswarm size was increased. Itis expected
that the PSO will stagnate more easily with small swarm sizdle the GCPSO is expected to be able
to avoid stagnation even for swarm sizeshof= 2. Table 2 presents the mean function value over
500 runs obtained from the global best particle after 10° function evaluations for each of the four
configurations indicated, whefedenotes the swarm size. The median function values of thmbhest
particle after2 x 10° function evaluations over 500 runs are plotted against swsizes in the range

2 to 20 in Figure 8; the median was selected to produce clgaats through its greater robustness to

outliers.

The functions belong to two different categories: funcigin—/> are strictly unimodal, while func-
tions f3—fs contain many local minima. Since neither of the two algonishtested here are designed to
find the global minimum in the presence of many local minirha,results for functiongs—fs should be

seen only as an indication of their ability to converge inghesence of multiple minima.

The trend is clearly visible: when considering swarms doirig only 2 particles, the GCPSO per-
forms significantly better than the PSO, especially on fionst fo—f>. On the other functions, the
improvement is less dramatic, as both algorithms tend torhedrapped in the same type of local mini-

mum.

When considering the experiments with a more typical 20igast per swarm, the GCPSO does
not appear to have a definite advantage, with four of the tesitions favouring the GCPSO, and three
favouring the PSO. The graphs presented in Figure 8 showaa pktern for functionsy and fs:
the performance of the GCPSd&teriorateswhen the swarm size increases beydnd= 10. Even
Griewank’s function {4) appears to exhibit decreasing performance with incrga@€PSO swarm
sizes; this may be because the product term in equationg4i®minated by the quadratic term for large
n, SO that the function behaves more likg On multi-modal functionsfs (not shown in Figure 8),
f5, and f the performance of the GCPSO improves with increasing swszm just like the original

PSO. On the unimodal Rosenbrock functigh)(the original PSO attains peak performancé at 10;
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simulations. Thei-axis represents the swarm size. The profile for Rastridimistion (f3) is not shown, but has
the same shape and relative ranking as thgt of
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Figure 9. Error profiles for the Sphere function.

although not clearly visible in Figure 8(a) and (c), simitehaviour is observed on the other unimodal
functions. For a fixed number of function evaluations, bdid original PSO and the GCPSO have an
optimal swarm size for strongly unimodal functions; onceiffiGient level of diversity is guaranteed by
the optimal number of particles, any additional particlésjust consume additional function evaluations
without contributing to performance. From the results ibl€2 and Figure 8, it would appear that the
GCPSO has a smaller optimal swarm size compared to the akiBi8O. This is a desirable property
for cooperative PSO algorithms such as the CPSO [2], wheadlenswarm sizes help to decrease the
overall computational complexity of the algorithm.

Figures 9 and 10 are profiles of the mean function value of thiead) best particle over 500 runs,
plotted against the number of function evaluations. Thedees were sampled at every iteration of the

respective algorithms, and then downsampled by a factod & &id visualisation. The PSO-based algo-
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Error profiles for the Griewank function.
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rithms have the number of particles used appended to thmtdldn the legend. Note that the GCPSO-2
curve in Figure 9 becomes flat at around x 10° function evaluations — this is most likely caused by the
limited machine precision, as the final value returned byctivefiguration is very close to the smallest
number that can be represented on the test machine. FigwsieoW® that none of the PSO algorithms
tested here could escape the local minima into which theledefor their graphs are flat after the first

100000 function evaluations.

9.2. Global PSOs

Section 8 introduced two strategies for extending the Pg0ri#thm to ensure guaranteed convergence
on a global minimiser. Both of these strategies only guaeamonvergence on a global optimiser as
the number of iterations approach infinity. It therefore agéms to be seen if these strategies offer any
practical advantages in a finite number of iterations. Erpemts involving both the RPSO and the
MPSO algorithm were implemented to investigate this matter

The MPSO algorithm has three different mechanisms (sedo8eg12) that can be used to detect
convergence, signaling that the algorithm must re-stéiesé three convergence-detection methods are

included in the comparison, yielding the following alghbrits:

MPSO, 44ius: The MPSO algorithm, using themaximum swarm radiusonvergence detection tech-
nigue described in Section 8.2. The algorithm was configeethat the swarm was declared to
have stagnated when,,., < 10~%. This value was found (informally) to produce good resuits o

a small set of test functions.

MPSO.ster: The MPSO algorithm, using theluster analysisconvergence detection technique de-
scribed in Section 8.2. The value®f .., was set ta0~%; the swarm was re-initialised whenever
more than 60% of the particles were clustered around theabhmst particle. Again, these values

were found empirically to result in acceptable performameca small set of test functions.

MPSO,,.. The MPSO algorithm, using thebjective function slopeonvergence detection technique

described in Section 8.2. The algorithm re-initialisedstvarm whenevef,..;, < 10~1° for more
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Table 3. Comparing various global algorithms on Ackleysdtion.

Algorithm Mean f(x) Median f(x)

GCPSO 2.96€00 + 6.36e-01 2.70e-00
MPSO.ugins  7.51e-01+ 1.35e-01 9.31e-01
MPSQuuster  1.656+00 + 1.46e-01 9.31e 01
MPSQuqpe  1.65e+00+ 1.70e-01 1.34e-00
RPSO 2.96e00 + 3.53e-01 2.96e-00

than 500 consecutive iterations. These values were ch@saulon previous experience with the

algorithm, where it was found that they result in acceptaeldormance.

RPSO: The RPSO algorithm, described in Section 8.1. No extragbestwere added to act as ran-
domised particles, so that three of the 20 normal particlebé swarm were converted into ran-
domised patrticles, leaving only 17 normal particles. Tlhikig was chosen to limit the possibly

disruptive influence that the randomised particles coule lum the overall behaviour of the swarm.

All experiments were performed using a swarm size of 20, wihameter settings af, = ¢ =
1.4961798 andw = 0.729844. The GCPSO algorithm used in these experiments was corfigaeati-
cally to the one employed in Section 9.1.

These algorithms are atochastiaglobal optimisers, thus they are not guaranteed to find thiead)|
(or even a good local) minimum on every finite run. Since ontg @oor solution, say on the order
of 1073, can skew the mean of a population otherwise consisting loksaon the order of0~19, the
median of each simulation run is also provided along withritean.

Table 3 presents the results of applying the four global B&&ed algorithms to the task of min-
imising Ackley’s function. The MPSQ ;. algorithm performed significantly better than any other
algorithm. Note that all three of the MPSO algorithms parfed significantly better than the GCPSO
and RPSO algorithms. On this function it does not appeartt@®aRPSO algorithm had any positive
influence on the performance of the algorithm, since it hadstime mean performance as the GCPSO

algorithm.
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Table 4. Comparing various global algorithms on Rastrgfohction.

Algorithm Mean f(x) Median f(x)

GCPSO 7.61€01 + 5.07e-00 7.61e-01
MPSO.ugius ~ 4.586+-01+ 1.45e-00 4.58e-01
MPSQuuster  4.486+-01+ 1.41e100 4.48e-01
MPSQuope  4.97€+01+ 1.59e+00 4.97e-01
RPSO 7.41e01 + 3.49e-00 7.41e-01

Table 5. Comparing various global algorithms on Griewaifilk’sction.

Algorithm Mean f(x) Median f(x)

GCPSO 2.21€02 + 4.84e-03 1.23e-02
MPSO.givs  1.996-094 1.87e-10 1.52e-09
MPSQuuster  3.69e-02 4 8.19e-03 1.48e-02
MPSQu,.  1.68e-03+7.39e-04  2.17e-19
RPSO 453602+ 7.72e-03 1.23e-02

The results in Table 4 were obtained by minimising Rastisgimction using the various algorithms.
Note that there was once again no significant difference dmtwhe performance of the RPSO algorithm
and that of the GCPSO algorithm. All three the MPSO algorgthrerformed significantly better than the
GCPSO. Amongst themselves the MBSH,s and MPSQ,,.:., algorithms performed significantly bet-
ter than the MPSQ),,,,. algorithm, although there was no significant differenceveen the performance

of the MPSQ4ius and MPSQ;,, ¢ algorithms.

Table 5 presents the results of minimising Griewank’s fiomcusing the various algorithms. Both
the MPSQy.ste and RPSO algorithms performed significamiiprse than the GCPSO. Clearly, the
MPSQ,..ste algorithm had no beneficial effect on this function, mostljkbecause it failed to trigger,
i.e., it could not detect that the swarm has stagnated. THaa@menon can be attributed to the fact that
the adjustable parametet;;.sn) in the MPSQ;,:, algorithm was set to a value that was too small for
Griewank’s function. If the function contains many localnimia very close to one another, the swarm

could stagnate with a few particles scattered over seveighbouring minima. In this case, the cluster



40 F. van den Bergh, A.P. Engelbrecht/ Particle Swarm Optimenvergence Proof

Table 6. Comparing various global algorithms on Schwefefgtion.

Algorithm Mean f(x) Median f(x)

GCPSO 4.87¢03+ 1.31e+02  4.87e-03
MPSOugis  3.71€-03+8.07e-01  3.71e-03
MPSQuuster  4.856-03+ 1.32e102  4.85e-03
MPSQu,.  4.08e+03+8.25e-01  4.08¢-03
RPSO 4.73¢03+1.38e+02  4.73e-03

detection algorithm could fail, since there are too fewipbkas close to the global best particle.

Note the large difference between the mean and the mediaasvaf the MPSQ,,,. algorithm re-
sults. Based on the median, itis clear that the MBgQalgorithm performed better than the MPSQ),.s
algorithm on most of the runs, although the mean does notctdfies. This is an indication that the
MPSQ;;,,. algorithm did not trigger often enough to detect stagnatiaring all the simulation runs.
This suggests that future research should investigateraténl methods for adjusting the sensitivity of

the MPSQ;,,. algorithm.

Applying the various algorithms to the task of minimisingh8efel’'s function yielded the results
presented in Table 6. The RPSO and MRS algorithms did not perform significantly better than
the baseline GCPSO algorithm. The other two MPSO algoriti#SQ,;,,. and MPSQ,4;,s, did
show a significant improvement over the GCPSO algorithm. MIR&Q, ,4;.,s algorithm further showed
a significant improvement in performance over the MRS algorithm, making it the overall best
algorithm on this function.

Figure 11 further elucidates the characteristics of thuaralgorithms when applied to Griewank’s
function. The GCPSO, MPSg).:., and RPSO algorithms all behave similarly, clearly failiognake
any further improvements after about 10000 function evadna. This behaviour is normal for the
GCPSO, since it is not explicitly designed to deal with npldtilocal minima. For the RPSO, this
implies that the randomised particles have no effect. Ity tatnone of the problems did the RPSO offer

any improvement in performance over the GCPSO.

The results presented in this section indicate that the MR®Uly of algorithms have the ability
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Figure 11. The Griewank function error profile, obtainechgghe various global PSO algorithms.
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to improve the performance of the GCPSO on functions coimigiimultiple minima. The effectiveness
of the MPSO algorithm depends on the algorithm used to détermvhen to re-initialise the swarm.
From the results it is clear that the MPS(). and MPSQ,;,s algorithms were able to improve on the
performance of the GCPSO consistently, while the MBS, algorithm sometimes failed to deliver

improved performance.

10. Conclusions

The main objective of this paper was to provide convergencefp for the particle swarm optimiser
(PSO). It was formally proven that the original PSO is notaalmr global optimiser. A flaw in the PSO
was identified and addressed in the new, guaranteed comeerdggSO (GCPSO). A proof was given to
show that the GCPSO is a local minimiser. Several versiortkedPSO with global convergence were
presented. Rates of convergence and stopping conditiottsfglobal PSO versions have been explored.

Experiments on unimodal functions show that the theoregigaranteed local convergence property
of the GCPSO does indeed translate into improved perforenanmpared to the original PSO algo-
rithm. The difference in performance between the GCPSOlamariginal PSO is more pronounced in
configurations with smaller swarm sizes. This indicates stegnation of the original PSO is less of a
problem if the swarm is sufficiently large. There are certainfigurations, such as the cooperative PSO
algorithms, where smaller swarm sizes are desirable. THeS&Ccan thus be used to reduce the number
of function evaluations required to solve a problem, whikEmtaining the solution quality.

The experiments on multi-modal functions have shown tratGEPSO does not offer such a clear
advantage over the original PSO. This is not completely peeted, because the guaranteed convergence
property of the GCPSO does not improve the global searchvimhreof the algorithm explicitly. The
RPSO and MPSO variants do have a mechanism that ensurekdhatitl locate the global minimiser,
but convergence onto a global minimiser is only guaranteiti thhe number of iterations approaching
infinity. The results obtained with the RPSO and MPSO vasiahbw that the theoretical convergence
does not readily translate into improved performance o¥mite number of iterations. In particular, the

RPSO variant does not appear to offer any improvement oegB{bPSO. The MPSO variants do appear
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to offer some improvement, but it is clear that a much morénstipated strategy will be required to

improve the rate of convergence onto global minimisers.
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A. Convergence of particlesonto global best particle

Using a technique similar to that used in Section 6, it wilvioe shown that all the particles have a
non-zero probability of moving closer by at least distancg, if it is not already within distance

fromy.

LemmaA.l. Every particlel < i < h has a non-zero probability of moving closer to the globak bes

particle positiony, by at least a distange > 0.

Proof: Let B’ be a ball of radiug, centered aj. Pick the point’ € argmax, {dist(y,x)|x € Lo},
as illustrated in Figure 12. LdB be the hypercube centeredsatwith sides of lengti2(dist(y, x') —
0.5p).

Let C be the convex hull ok’ and B’ (see Figure 12). Consider a line tangenBto passing through
x' (i.e., one of the edges @f). This line is the longest such line, faf is the point furthest fronb’.

This implies that the angle subtendedXyis the smallest such angle of any pointiig. In turn, this
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01

Figure 12. The intersectiofi N B, with B centered oty.

implies that the volumé€ N B is smaller than that af’ N B for any other convex hull’ defined by any

arbitrary pointx € L.

Let M; i, be the support of the hyper-rectangle from which partickgll sample its next position.

This hyper-rectangle is defined by its two corngrsandq;:

Pij = Vijk + c1(Wijk — Tijx) + 2(Pije — Tije), 1<j<n (46)

q; = X; +V; (47)

Note that the distribution; ;, over M; ;. is the convolution of the uniform distributions of its tworoe
ponents, which assume values in the ran@es, (y;;» — ;)] and[0, ca(9ij,¢ — x45,)]. Observe that

M; ;. will typically containy, although this is not required at every step to ensure cgavee.

Then we have that for ak in L, and thus all particle positions; ;,

pi g |dist(g(xi ), y) < dist(x;¢,¥) — 0.5p] > n = p[CNB| >0 (48)
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If a particle is thus further thap from y in any dimensiory, then Equation (48) guarantees that the

particle will be able to move closer by at least distancg. |



