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ABSTRACT 

This paper investigates the empirical relevance of structural breaks in forecasting stock return 

volatility using both in-sample and out-of-sample tests and daily returns for the Johannesburg 

Stock Exchange (JSE) All Share Index from 07/02/1995 to 08/25/2010. We find evidence of 

structural breaks in the unconditional variance of the stock returns series over the period, with 

high levels of persistence and variability in the parameter estimates of the GARCH (1, 1) model 

across the sub-samples defined by the structural breaks. This indicates that structural breaks are 

empirically relevant to stock return volatility in South Africa. In out-of-sample tests, we find that 

combining forecasts from different benchmark and competing models that accommodate 

structural breaks in volatility improves the accuracy of volatility forecasting. Furthermore, for 

shorter horizons, the MS-GARCH model better captures asymmetry in stock return volatility 

than the GJR-GARCH (1, 1) model, which better suited to longer horizons, but in general, the 

asymmetric models fail to outperform the GARCH (1,1) model.    
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1. Introduction 

The impact of structural breaks on the accuracy of volatility forecasts has largely been ignored in 

previous research. This is because researchers in using the generalised autoregressive conditional 

heteroscedastic (GARCH) model of Engle (1982) and Bollerslev (1986) often assume (both 

implicitly and explicitly) the existence of a stable GARCH process in volatility forecasting. As a 

result most researchers use a fixed or expanding window when estimating GARCH models used 

to generate out-of-sample volatility forecasts. This affects the accuracy of volatility forecasts 

using GARCH processes in several ways.  

Failure to account for structural breaks in the unconditional variance of stock market returns can 

lead to sizeable upward biases in the degree of persistence in estimated GARCH models (Mikosh 

et al. 2004; Hillebrand, 2005; building on earlier work by Diebold, 1986; Hendry, 1986; 

Lamoureux et al. 1990). With structural breaks GARCH models do not accurately track changes 

in the unconditional variance leading to forecasts that underestimate or overestimate volatility on 

average for long stretches. This is because the fixed or expanding window mechanism as used 

under stable GARCH processes does not perform well in the presence of structural breaks (West 

et al. 1995). Again neglecting structural breaks in the unconditional variance may lead to over 

persistent GARCH models which have adverse effects on volatility forecasts (Rapach et al. 

2008). Consequently long-horizon forecasts of stock return volatility generated by GARCH (1, 

1) models that allow for periodic changes in the unconditional variance of stock returns have 

been found to yield better results than forecasts that assume parameter stability (Stărică et al.  

2005).  

Despite extensive work on volatility forecasting of asset returns, hardly any work is specific to 

South Africa in terms of forecasting the volatility of stock market returns. The only study we are 

aware of is by Samouilhan and Shannon (2008), who use a small data set of 682 observations 

(01/02/2004-28/09/2006) of daily data for the TOP40 index of the Johannesburg stock exchange 

(JSE). The authors investigated the comparative ability of three types of volatility forecasts 

namely different autoregressive conditional heteroscedasticity (ARCH) by Engle (1982), and as 

generalised by Bollerslev (1986) on one hand, a Safex Interbank Volatility Index (SAVI) for the 

options market, and measures of volatility based purely on historical volatility using a random 
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walk (naive) and 5-day moving average forecasts. Samouilhan and Shannon (2008) found that 

the GARCH (2, 2) specification provided the best in-sample fit of all the symmetric GARCH 

models. For their out-of-sample results the GARCH (1, 1) specification provided the best 

forecast of all the symmetric models as compared to GARCH (1, 2), (2, 1) and (2, 2) models.  

However, Samouilhan and Shannon (2008) assume the existence of a stable GARCH process in 

volatility forecasting and do not take into consideration the impact of structural breaks on the 

accuracy of volatility forecasts. Additionally only one period ahead forecasts, whether using 

daily data or averaged out daily data to compute weekly data, were used in their paper to 

ascertain the accuracy of the three different volatility forecasting approaches.   

To address these gaps in the South African literature, we investigate the empirical relevance of 

structural breaks for GARCH (1, 1) models of stock return volatility in South Africa using in-

sample and out-of-sample tests. We again differ from Samouilhan and Shannon (2008) by using 

multi-period horizons to ascertain the accuracy of different forecasting approaches as compared 

to a one period ahead approach by Samouilhan and Shannon (2008). Note, we did not consider 

GARCH (p, q) models, because the GARCH (1, 1) model is essentially treated as the canonical 

specification in the literature on asset returns volatility. Further, the GARCH (1, 1) specification 

has been found to be sufficient in practice for such studies, even though the GARCH (p, q) 

model might be of theoretical interest (Bollerslev et al. 1992). More importantly, in our case, we 

found the GARCH (1, 1) model to fit the data better than the GARCH (2, 2) model, both in- and 

out-of-sample.
1
 Given that, Samouilhan and Shannon (2008) observed the so-called “leverage 

effect” in the volatility of returns of the TOP40 index using the Glosten et al., (1983)-GARCH 

(GJR-GARCH) model, we too look into the issue by considering not only the GJR-GARCH(1, 1) 

model, but also the Markov Switching-GARCH (MS-GARCH) framework (Klassen, 2002; Haas 

et al., 2004) in terms of forecasting relative to our benchmark GARCH (1, 1) model. Note, the 

so-called leverage effect refers to the situation where negative returns shocks are correlated with 

larger increases in volatility than positive returns shocks. The rest of the paper is organised as 

follows; section 2 details the econometric methodology, section 3 the empirical results for the in-

sample and out-of-sample tests. Section 4 concludes.  

 

                                                           
1
 The results from the GARCH (2, 2) model  is available upon request from the authors. 



 

2. Econometric Methodology 

2.1  In-Sample Tests 

For the in-sample tests we employ a modified version of

algorithm (Incl n et al. 1994) to test for the possibility of structural breaks in the unconditional 

variance of the daily Johannesburg Stock Exchange  (JSE) all share index from 1995 to 2010. 

Let  = 100[ln( ln( )], be the returns on a stock index from time t

denotes  the value of the stock index at time 

(conditional and unconditional)  mean of 

cumulative sum of squares statistic given by 

IT =

that tests the null hypothesis that the unconditional variance 

the alternative hypothesis of a break in the unconditional variance at some point in the sample. 

= (   - (k/T) and   = 

value of k that maximises 

N (0, , Incl n and Tiao (1994) show that under the null hypothesis the asymptotic 

distribution of the IT statistic is given by 

Brownian bridge and W( r ) is a standard Brownian motion. Finite

are then generated using simulation methods. 

Several studies (see Andreu et al

the IT statistic can be substantially oversized when 

GARCH process. This is because the IT statistic is designed for 

deficiency of the IT statistic and allow 

null hypothesis, including GARCH processes, a nonparametric adjustment based on the Bartlett 

Kernel is applied to the IT statistic given by 

        

 

sample tests we employ a modified version of the iterated cumulative sum of squares 

. 1994) to test for the possibility of structural breaks in the unconditional 

variance of the daily Johannesburg Stock Exchange  (JSE) all share index from 1995 to 2010. 

)], be the returns on a stock index from time t-

denotes  the value of the stock index at time t and =  – , where 

(conditional and unconditional)  mean of . Supposing  can be observed for 

cumulative sum of squares statistic given by  

IT =           

at the unconditional variance  is constant for k

the alternative hypothesis of a break in the unconditional variance at some point in the sample. 

=  for k = 1… T. When the null hypothesis is rejected, the 

 serves as the estimate of the break date. When 

n and Tiao (1994) show that under the null hypothesis the asymptotic 

ribution of the IT statistic is given by  where  = W( r ) 

is a standard Brownian motion. Finite-sample critical values of IT 

are then generated using simulation methods.  

et al. 2002: de Pooter et al. 2004; Sansό et al. 2004) have shown that 

the IT statistic can be substantially oversized when  follows a dependent process such as a 

GARCH process. This is because the IT statistic is designed for i.i.d processes. To address this 

deficiency of the IT statistic and allow  to follow a variety of dependent processes under the 

null hypothesis, including GARCH processes, a nonparametric adjustment based on the Bartlett 

statistic given by  

        AIT =       

3 

the iterated cumulative sum of squares 

. 1994) to test for the possibility of structural breaks in the unconditional 

variance of the daily Johannesburg Stock Exchange  (JSE) all share index from 1995 to 2010.  

1 to period t.  

 is the constant 

can be observed for t = 1… T, the 

  (1) 

k =1… T, against 

the alternative hypothesis of a break in the unconditional variance at some point in the sample. 

When the null hypothesis is rejected, the 

serves as the estimate of the break date. When  iid 

n and Tiao (1994) show that under the null hypothesis the asymptotic 

W( r ) – r W(1) is a 

sample critical values of IT 

2004) have shown that 

follows a dependent process such as a 

processes. To address this 

to follow a variety of dependent processes under the 

null hypothesis, including GARCH processes, a nonparametric adjustment based on the Bartlett 

        (2)    



 

where =   [  - (k/T) )], 

 =  

selected using the procedure in Newey 

given by  under general conditions, and finite

generated by simulation methods. 

The IT statistic can also be used to test for multiple breaks in the unconditional variance using an 

iterative cumulative sum of squares (ICSS) algorithm also developed by Incl

avoid the size distortions that results with the use of the IT statistic, the ICSS procedure can 

alternatively be based on the AIT statistic in order to allow 

under the null hypothesis. We then use a 5% level of significance to test for 

the unconditional volatility of the daily stock returns series for the JSE All Share Index.  

The GARCH (1, 1) model for 

where   represents the conditional volatility of 

variance.   measures the persistence of the GARCH (1.1) model and 

process to be covariance-stationary. When  

model of Bollerslev (1986). In equation (4), 

 =  and  is characterised by conditional homoscedasticity.  For the GARCH (1, 1) process 

to be stationary the unconditional variance of  

Maximum Likelihood Estimation (QMLE) is often used to estimate the GARCH (1, 1) because 

QMLE parameter estimates have been shown to be consistent and asymptotically normal (Berkes 

et al. 2003; Jensen et al. 2004; Straumann, 2005). It is however assumed that 

the restrictions  > 0 and 

empirical relevance of structural breaks in unconditional volatility for the JSE All share index 

)],  =  ,   

),  = . The lag truncation parameter 

selected using the procedure in Newey et al. 1994.  The asymptotic distribution of AIT is also 

under general conditions, and finite-sample critical values can again be 

generated by simulation methods.  

The IT statistic can also be used to test for multiple breaks in the unconditional variance using an 

iterative cumulative sum of squares (ICSS) algorithm also developed by Incl n 

s that results with the use of the IT statistic, the ICSS procedure can 

alternatively be based on the AIT statistic in order to allow  to follow dependent processes 

under the null hypothesis. We then use a 5% level of significance to test for structural breaks in 

the unconditional volatility of the daily stock returns series for the JSE All Share Index.  

 with mean zero (conditional and unconditional) is expressed as 

 =        

=  +  +      

represents the conditional volatility of  and  is i.i.d. with mean zero and unit 

measures the persistence of the GARCH (1.1) model and 

stationary. When   = 1 we have the integrated GARCH (1, 1) of 

model of Bollerslev (1986). In equation (4),  is unidentified and set to zero when 

is characterised by conditional homoscedasticity.  For the GARCH (1, 1) process 

to be stationary the unconditional variance of   is given by / (1 -  

Maximum Likelihood Estimation (QMLE) is often used to estimate the GARCH (1, 1) because 

QMLE parameter estimates have been shown to be consistent and asymptotically normal (Berkes 

2004; Straumann, 2005). It is however assumed that 

  0 imposed. The in-sample tests enable us to analyse  the 

empirical relevance of structural breaks in unconditional volatility for the JSE All share index 

4 

 

. The lag truncation parameter m is 
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sample critical values can again be 
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n et al. (1994). To 
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the unconditional volatility of the daily stock returns series for the JSE All Share Index.   

with mean zero (conditional and unconditional) is expressed as  
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Maximum Likelihood Estimation (QMLE) is often used to estimate the GARCH (1, 1) because 

QMLE parameter estimates have been shown to be consistent and asymptotically normal (Berkes 

  N (0.1), and 

sample tests enable us to analyse  the 

empirical relevance of structural breaks in unconditional volatility for the JSE All share index 



 

and the effect of structural breaks on GARCH (1, 1) models. The in

framework for analyzing the out-

2.2 Out-of-Sample Tests 

To compare the out-of-sample forecasts of stock return volatility, we first divide the sample of 

stock returns into two portions; in

contains the first R observations and the out

We use three benchmark models and five competing models to compare the out

forecasts. The first benchmark model is a GARCH (1, 1) model estimated 

window. The first out-of-sample forecast at the 1

=  +  + 

estimates of  ,  and  respectively obtained from equation (4) using QMLE and data 

from the first observation through to observation R.  For the second out

we expand the estimation window by one observation using data from the first observation 

through observation R+1, 

available out-of-sample period, yielding a series of 

given by {  .  

The RiskMetrics model is the second benchmark model based on an expanding window. It is 

easier to implement because it does not involve the estimation of any parameters. It is 

the exponential weighted moving average 

recommended by the RiskMetrics Group (1996) for daily data.  Consistent with the usual 

practice, we set the s-step-ahead forecast for 

RiskMetrics model.  The s-step

model is given by {  

The fractionally integrated GARCH (1, 

model also estimated using an expanding window (see Baillie 

The FIGARCH (1, d, 1) specification is given by  

and the effect of structural breaks on GARCH (1, 1) models. The in-sample tests also provide a 

-of-sample tests results. 

sample forecasts of stock return volatility, we first divide the sample of 

stock returns into two portions; in-sample and out-of-sample, where the in

contains the first R observations and the out-of-sample portion contains the last P observations. 

We use three benchmark models and five competing models to compare the out

forecasts. The first benchmark model is a GARCH (1, 1) model estimated using an expanding 

sample forecast at the 1-period horizon (s = 1) is given by 

  where  , ,  and  

respectively obtained from equation (4) using QMLE and data 

from the first observation through to observation R.  For the second out-of-sample forecast R+2, 

stimation window by one observation using data from the first observation 

. We continue this way through to the end of the 

sample period, yielding a series of P one-step ahead out-of-

 

The RiskMetrics model is the second benchmark model based on an expanding window. It is 

easier to implement because it does not involve the estimation of any parameters. It is 

the exponential weighted moving average  = where 

recommended by the RiskMetrics Group (1996) for daily data.  Consistent with the usual 

ahead forecast for s > 1equal to the 1-step-ahead forecast for the 

step-ahead out-of-sample volatility forecasts for the RiskMetrics 

.  

The fractionally integrated GARCH (1, d, 1) or FIGARCH (1, d, 1) model is the third bench

model also estimated using an expanding window (see Baillie et al. 1996).  

1) specification is given by   
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sample tests also provide a 

sample forecasts of stock return volatility, we first divide the sample of 

sample, where the in-sample portion 

sample portion contains the last P observations. 

We use three benchmark models and five competing models to compare the out-of-sample 

using an expanding 

period horizon (s = 1) is given by  

and    are the 

respectively obtained from equation (4) using QMLE and data 

sample forecast R+2, 

stimation window by one observation using data from the first observation 

. We continue this way through to the end of the 

-sample forecasts 

The RiskMetrics model is the second benchmark model based on an expanding window. It is 

easier to implement because it does not involve the estimation of any parameters. It is given by 

where as 

recommended by the RiskMetrics Group (1996) for daily data.  Consistent with the usual 

ahead forecast for the 

sample volatility forecasts for the RiskMetrics 

1) model is the third benchmark 
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where L is lag operator and 

The parameter vector (

  and 

FIGARCH (1, d, 1) model is considered a relevant benchmark in forecasting volatility of asset 

returns. This is because autocorrelations of squared or (absolute) returns for many financial 

assets decay slower than exponentially as implied by GARCH models. Thus conditional 

heteroscedasticity may be better described by a long memory process as captured by the   

FIGARCH (1, d, 1) specification. The forecasts generated by the FIGARCH (1, 

denoted by { . 

The first forecasting competing model is a GARCH (1, 1) 0.5 r

generates forecasts using a rolling estimation window equal to one

sample period. The forecasts are generated similar to the GARCH(1,1) expanding window 

model, except that the parameter estimates f

observations (0.5R+1, ……, R

observations (0.5R+2, ……, R+1) and so on. The forecasts for the GARCH (1, 1) 0.5 rolling 

window model is denoted by

(1, 1) 0.25 rolling window. This model generates forecasts using a rolling estimation window 

equal to one-quarter of the size of the in

based on observations (0.75R+1, ……, 

observations (0.75R+2, ……, R+1) and so on. We denote the forecasts for the GARCH (1, 1) 

0.25 rolling window model by

As in Mittnik et al. (2000), the third c

estimated using an expanding window and a weighted maximum likelihood procedure. This 

model is known to better handle structural instabilities in GARCH parameters (Mittnik 

2000). In forming the likelihood function used to estimate the GARCH (1, 1) model parameters, 

declining weights are assigned to observations in the more distant past. For the first out

sample forecast using data through R observations, a weight of 

= 1,…, R in the log-likelihood function used to estimate the GARCH (1, 1) parameters. To 

is lag operator and 

 is fractional differencing operator. 

 is estimated using QMLE under the assumption that 

 to ensure that the conditional variance is positive. The 

onsidered a relevant benchmark in forecasting volatility of asset 

returns. This is because autocorrelations of squared or (absolute) returns for many financial 

assets decay slower than exponentially as implied by GARCH models. Thus conditional 

ticity may be better described by a long memory process as captured by the   

1) specification. The forecasts generated by the FIGARCH (1, 

The first forecasting competing model is a GARCH (1, 1) 0.5 rolling window model. This model 

generates forecasts using a rolling estimation window equal to one-half of the size of the in

sample period. The forecasts are generated similar to the GARCH(1,1) expanding window 

model, except that the parameter estimates for the first out-of-sample forecast are based on 

R) and for the second out-of-sample forecast are based on 

+1) and so on. The forecasts for the GARCH (1, 1) 0.5 rolling 

. The second competing model is a GARCH 

(1, 1) 0.25 rolling window. This model generates forecasts using a rolling estimation window 

quarter of the size of the in-sample period so that the first out-of-sample forecast are 

+1, ……, R) and for the second out-of-sample forecast are based on 

+1) and so on. We denote the forecasts for the GARCH (1, 1) 

. 
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generate the second out-of-sample forecast the window is expanded by one observation and a 

weight of  attached to observations 

procedure is continued through to the end of the available out

(2000) recommend , which they find work well in out

The forecasts generated by the GARCH (1, 1) weighted maximum likelihood model is denoted 

as {   

In the fourth competing model the modified 

window for the GARCH (1, 1) model. The modified ICSS algorithm is first of all a

observation one through R. If there is evidence of one or more structural breaks, and the final 

break is expected to occur at time 

 TF  + 1 through R to form an estimate of 

break is found the GARCH (1, 1) model is then estimated using observations one through R to 

form an estimate of . For the second out

applied to observations one through 

forecast is followed. We proceed in this manner through the end of the available out

period, producing a series of forecasts corresponding to the GARCH (1, 1) wi

given by { 

estimation window only uses data available at the time of the forecast formation. As a result 

there is no “look ahead” bias involved in the generation of

with breaks model.  

The final competing forecasting model is a simple moving average model that uses the average 

of the squared returns over the previous 250 days to form the volatility for day 

models when forecasting daily stock return volatility over longer horizons especially for 

industrialised countries and also very useful in accommodating structural breaks (St

2005).   Following Rapach et al

step-ahead forecast for the moving average model. We denote the sequence of s

of-sample forecasts for the moving average model by

sample forecast the window is expanded by one observation and a 

attached to observations t = 1,..., R + 1 in the log-likelihood function. This 

procedure is continued through to the end of the available out-of-sample period. Mittnik 

, which they find work well in out-of-sample volatility forecasts. 

y the GARCH (1, 1) weighted maximum likelihood model is denoted 

In the fourth competing model the modified  ICSS algorithm is used to select the estimation 

window for the GARCH (1, 1) model. The modified ICSS algorithm is first of all a

observation one through R. If there is evidence of one or more structural breaks, and the final 

break is expected to occur at time TF, the GARCH (1, 1) model is estimated using observations

to form an estimate of . One the other hand if no evidence of a structural 

break is found the GARCH (1, 1) model is then estimated using observations one through R to 

. For the second out-of-sample forecast, the modified ICSS algorithm is 

to observations one through R+1and the same procedure as in the first out

forecast is followed. We proceed in this manner through the end of the available out

period, producing a series of forecasts corresponding to the GARCH (1, 1) wi

. The modified ICSS algorithm that determines the size of the 

estimation window only uses data available at the time of the forecast formation. As a result 

there is no “look ahead” bias involved in the generation of the forecasts for the GARCH (1, 1) 

The final competing forecasting model is a simple moving average model that uses the average 

of the squared returns over the previous 250 days to form the volatility for day 

. This model has been found to outperform GARCH (1, 1) 

models when forecasting daily stock return volatility over longer horizons especially for 

industrialised countries and also very useful in accommodating structural breaks (St

et al. (2008), we set the s-step-ahead forecast for s > 1 equal to 1

ahead forecast for the moving average model. We denote the sequence of s

sample forecasts for the moving average model by . 
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Additionally we consider a multi period volatility forecast over the out

horizons of 1, 20, 60 and 120 days with the aim of exploring the effects of structural breaks on 

volatility forecasting and the usefulness of various forecasting methods designed

accommodate potential structural breaks. Based on information available at period 

denote the model  forecast
2
 of  

1) s-step ahead out-of-sample forecasts given by 

generating   for s > 1 using the fitted GARCH (1, 1) process and the iterative procedure 

given by the equation 

 = + (  + /2 + ) 

To compare volatility forecasts across models we employ two loss functions; an aggregated 

version of the mean square forecast error (MSFE) metric by St

at-risk (VaR) by Gonzalez-Rivera 

= 

where   =  and 

useful metric for comparing volatility forecasts because it reduces the idiosyncratic noise in 

squared returns at horizons beyond one period (Andersen 

produces a consistent empirical ranki

proxy for measuring latent volatility (Awartani 

aggregated MSFE metric we analyse volatility forecasts at horizons of 1, 20, 60 and 120 days (s 

= 1, 20, 60, 120). 

With respect to the VaR loss function, let 

cumulative distribution function for the cumulative return 

model � and formed at time t – s.

 = [

                                                           
2
 Where = EXP, RM FI, ROLL(0.5), ROLL(0.25), WML, BREAKS, 

consider a multi period volatility forecast over the out-of-sample period for 

horizons of 1, 20, 60 and 120 days with the aim of exploring the effects of structural breaks on 

volatility forecasting and the usefulness of various forecasting methods designed

accommodate potential structural breaks. Based on information available at period 

of   formed at period t – s by  yielding a series of 

sample forecasts given by .  We then iterate forward by 

for s > 1 using the fitted GARCH (1, 1) process and the iterative procedure 

 from Franses et al. (2000).  

To compare volatility forecasts across models we employ two loss functions; an aggregated 

version of the mean square forecast error (MSFE) metric by Stărică et al. (2005) and t

Rivera et al. (2004).  The MSFE metric is given by 

   

 =  . Aggregation provides a more 

useful metric for comparing volatility forecasts because it reduces the idiosyncratic noise in 

squared returns at horizons beyond one period (Andersen et al. 1998). The MSFE loss function 

produces a consistent empirical ranking of forecasting models when squared returns serve as a 

proxy for measuring latent volatility (Awartani et al. 2004; Hansen et al. 2006). Thus using the 

aggregated MSFE metric we analyse volatility forecasts at horizons of 1, 20, 60 and 120 days (s 

With respect to the VaR loss function, let  be the forecast of the 0.05 quartile of the 

cumulative distribution function for the cumulative return  = 

s. The VaR loss mean function is given by  

 

= EXP, RM FI, ROLL(0.5), ROLL(0.25), WML, BREAKS, MA} 

8 

sample period for 

horizons of 1, 20, 60 and 120 days with the aim of exploring the effects of structural breaks on 

volatility forecasting and the usefulness of various forecasting methods designed to 

accommodate potential structural breaks. Based on information available at period t – s we 

yielding a series of P - (s - 

.  We then iterate forward by 

for s > 1 using the fitted GARCH (1, 1) process and the iterative procedure 

To compare volatility forecasts across models we employ two loss functions; an aggregated 

(2005) and the value-

  (6) 

. Aggregation provides a more 

useful metric for comparing volatility forecasts because it reduces the idiosyncratic noise in 

1998). The MSFE loss function 

ng of forecasting models when squared returns serve as a 

2006). Thus using the 

aggregated MSFE metric we analyse volatility forecasts at horizons of 1, 20, 60 and 120 days (s 

be the forecast of the 0.05 quartile of the 

 generated by 

  (7) 



 

where   = 1(   

when the argument is satisfied. When 

loss function to the difference between  

associated with large losses. Conversely a smaller weight of 0.05 is attached by the lo

to the difference between  and  

smaller in this case it is still positive thereby enabling the loss function to reflect the opportunity 

costs of the capital held to cover the potential losses indicated by

the  criterion is that it is motivated by the VaR as a risk management tool and does not 

require observations of the latent volatility

By assuming that  N (0, 1) we calculate 

(  = ) of a simulated sequence of returns based on estimates of the conditional 

volatility process available at the time of forecast formation ({

repeated 2000 times yielding an empirical distribution of simulated cumulative returns. The 100

element of the ordered simulated cumulative returns is the   

Besides ranking the forecasting models using the 

the null hypothesis that none of the competing models has superior predictive ability over the 

benchmark model in terms of expected loss, against the alternative one sided (upper

hypothesis that at least one of the competing models has superior predictive ability over the 

benchmark model.  That is we check whether the expected loss of the forecasts generated by at 

least one of the five competing models is significantly less than that generated by

benchmark model using the White (2000) test. The loss at time 

to benchmark model � is defined as   

after the summation operator in equation (6) or (7) for each loss function, and 

. The White (2000) statistic for 

 = 

with � = 5 in this paper.   

 and 1(.) is the indicator function that takes a value of unity 

when the argument is satisfied. When   , a large weight of 0.95 is attached by the 

loss function to the difference between   and   indicating a relatively high cost 

associated with large losses. Conversely a smaller weight of 0.05 is attached by the lo

and   when  . Although the weight is 

smaller in this case it is still positive thereby enabling the loss function to reflect the opportunity 

d to cover the potential losses indicated by . The advantage of 

criterion is that it is motivated by the VaR as a risk management tool and does not 

require observations of the latent volatility .  

(0, 1) we calculate  as the simulated cumulative returns

) of a simulated sequence of returns based on estimates of the conditional 

volatility process available at the time of forecast formation ({  ). This process is 

repeated 2000 times yielding an empirical distribution of simulated cumulative returns. The 100

element of the ordered simulated cumulative returns is the   .  

Besides ranking the forecasting models using the  and  loss functions, we test 

the null hypothesis that none of the competing models has superior predictive ability over the 

benchmark model in terms of expected loss, against the alternative one sided (upper

at least one of the competing models has superior predictive ability over the 

benchmark model.  That is we check whether the expected loss of the forecasts generated by at 

least one of the five competing models is significantly less than that generated by

benchmark model using the White (2000) test. The loss at time t for forecasting model 

is defined as   , where  is given by the expression 

after the summation operator in equation (6) or (7) for each loss function, and 

. The White (2000) statistic for � competing models is given by 

(   
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and 1(.) is the indicator function that takes a value of unity 

, a large weight of 0.95 is attached by the 

indicating a relatively high cost 

associated with large losses. Conversely a smaller weight of 0.05 is attached by the loss function 

. Although the weight is 

smaller in this case it is still positive thereby enabling the loss function to reflect the opportunity 

. The advantage of 

criterion is that it is motivated by the VaR as a risk management tool and does not 

as the simulated cumulative returns 

) of a simulated sequence of returns based on estimates of the conditional 

). This process is 

repeated 2000 times yielding an empirical distribution of simulated cumulative returns. The 100
th

 

loss functions, we test 

the null hypothesis that none of the competing models has superior predictive ability over the 

benchmark model in terms of expected loss, against the alternative one sided (upper-tail) 

at least one of the competing models has superior predictive ability over the 

benchmark model.  That is we check whether the expected loss of the forecasts generated by at 

least one of the five competing models is significantly less than that generated by a given 

for forecasting model j relative 

is given by the expression 

after the summation operator in equation (6) or (7) for each loss function, and  = [

competing models is given by   

  (8) 



 

As in White (2000) a p-value corresponding to 

method of Politis et al. (1994). The White (2000) reality check is performed by comparing each 

of the benchmark models (GARC

(1,d,1)) to the five competing models to check whether any of the five competing models 

performs better than the given benchmark model in terms of real

Additionally, the Hansen (2005) version of the White (2000) test which has a higher power in 

determining superior predictive ability is also conducted. The Hansen (2005) studentised version 

of the    statistic,   is computed and the p

bootstrap method of Politis et al. (1994). 

One drawback of the GARCH (1, 1) model is its 

variance to both positive and negative shocks is the 

not the sign of the shock is relevant. There exists ample empirical evidence of the existence of 

leverage effects in stock returns, meaning negative return shocks results in higher volatility in 

subsequent periods than positive return shocks. We compare the performance of two asymmetric 

GARCH models in accurately capturing leverage effects in stock return volatility, namely the 

GJR-GARCH (1, 1) model and the MS

asymmetric GARCH (1, 1) model of Glosten 

0, 1), and   = 

value of unity when  < 0 and zero otherwise. The 

Markov-switching GARCH(1,1) model of Haas et al. (2004) and is expressed as 

where 0, 1), with   

state two =

for j= 1, 2. The 

loss of the benchmark GARCH (1, 1) expanding window model is compared under the 

and criteria, as above. 

Recent literature has shown that comparing the relative predictive accuracy of different 

forecasting models need to take into consideration the relative sizes of the in

sample periods (P/R), type of estimating window use

the models being compared are nested or not. Since these requirements are not all necessarily 

value corresponding to  is generated using the stationary bootstrap 

. (1994). The White (2000) reality check is performed by comparing each 

of the benchmark models (GARCH (1, 1) expanding window, RiskMetrics and FIGARCH 

,1)) to the five competing models to check whether any of the five competing models 

performs better than the given benchmark model in terms of real-time volatility forecasting. 

(2005) version of the White (2000) test which has a higher power in 

determining superior predictive ability is also conducted. The Hansen (2005) studentised version 

is computed and the p-values again generated by the stationary 

. (1994).  

One drawback of the GARCH (1, 1) model is its assumption that the response of the conditional 

variance to both positive and negative shocks is the same-symmetrical. Thus only the size and 

not the sign of the shock is relevant. There exists ample empirical evidence of the existence of 

leverage effects in stock returns, meaning negative return shocks results in higher volatility in 

han positive return shocks. We compare the performance of two asymmetric 

GARCH models in accurately capturing leverage effects in stock return volatility, namely the 

GARCH (1, 1) model and the MS-GARCH (1, 1).  The GJR-GARCH (1, 1) model is the 

ric GARCH (1, 1) model of Glosten et al. (1993) and is expressed as 

 . The dummy 

< 0 and zero otherwise. The MS-GARCH (1, 1) is the two

switching GARCH(1,1) model of Haas et al. (2004) and is expressed as 

 =  in state one, 

, with transition probabilities given by 

for j= 1, 2. The ratio of the mean loss for each model to the mean 

loss of the benchmark GARCH (1, 1) expanding window model is compared under the 

teria, as above.  

Recent literature has shown that comparing the relative predictive accuracy of different 

forecasting models need to take into consideration the relative sizes of the in-sample and out

sample periods (P/R), type of estimating window used (expanding, rolling or fixed) and whether 

the models being compared are nested or not. Since these requirements are not all necessarily 
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H (1, 1) expanding window, RiskMetrics and FIGARCH 

,1)) to the five competing models to check whether any of the five competing models 
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(2005) version of the White (2000) test which has a higher power in 

determining superior predictive ability is also conducted. The Hansen (2005) studentised version 
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leverage effects in stock returns, meaning negative return shocks results in higher volatility in 

han positive return shocks. We compare the performance of two asymmetric 

GARCH models in accurately capturing leverage effects in stock return volatility, namely the 
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(1993) and is expressed as  where 

. The dummy I takes on the 

GARCH (1, 1) is the two-state 

switching GARCH(1,1) model of Haas et al. (2004) and is expressed as  

in state one,  and in 

, with transition probabilities given by  = [P(

ratio of the mean loss for each model to the mean 

loss of the benchmark GARCH (1, 1) expanding window model is compared under the  

Recent literature has shown that comparing the relative predictive accuracy of different 

sample and out-of-

d (expanding, rolling or fixed) and whether 

the models being compared are nested or not. Since these requirements are not all necessarily 



 

satisfied in our application we report the bootstrapped p

Hansen (2005)  statistics as a crude guide to assessing statistical significance of the various 

models used in this paper. 

3. Empirical Results 

3.1 Data and Descriptive Statistics 

 

Daily data on the Johannesburg Stock Exchange All Share Index 

sample period is from 07/02/1995 to 08/25

returns are based on the closing prices. The descriptive statistics are reported in Table 1. These 

statistics include heteroscedastic

standard deviation, skewness, and excess kurtosis. The computation of these statistics is based on 

the procedure in West et al. (1995). The mean is significantly different from zero at 5 % level

significance. Daily stock returns appear quite volatile and exhibit strong evidence of excess 

kurtosis. The modified Ljung-Box statistics are robust to conditional heteroscedasticity and show 

no evidence of autocorrelation of the daily stock returns.  

serial correlations in the squared stock returns. The Lagrange multiplier statistics are significant 

at 1 % level confirming ARCH effects (Engle, 1982). These descriptives support the modelling 

of stock market returns in South Africa using GARCH processes. 

 

Table 1: Summary statistics, SA JSE All Share Index returns 

                                                                       

Stock Market Price Return 

Mean                        

Standard deviation          

Skewness                    

Excess kurtosis             

Minimum                           

Maximum                            

Modified Ljung-Box (r=20)  

Squared Stock Market Price Return 

Ljung-Box (r=20)   

ARCH Lagrange multiplier (q = 2)  

ARCH Lagrange multiplier (q = 10) 

                                                                                                                             

satisfied in our application we report the bootstrapped p-values for the White (2000) 

statistics as a crude guide to assessing statistical significance of the various 

Data and Descriptive Statistics  

Daily data on the Johannesburg Stock Exchange All Share Index is used in this paper. The 

07/02/1995 to 08/25/2010 consisting of 3788 observations. The daily stock 

returns are based on the closing prices. The descriptive statistics are reported in Table 1. These 

statistics include heteroscedastic and autocorrelation consistent standard errors for the mean, 

standard deviation, skewness, and excess kurtosis. The computation of these statistics is based on 

(1995). The mean is significantly different from zero at 5 % level

significance. Daily stock returns appear quite volatile and exhibit strong evidence of excess 

Box statistics are robust to conditional heteroscedasticity and show 

no evidence of autocorrelation of the daily stock returns.  However there is strong evidence of 

serial correlations in the squared stock returns. The Lagrange multiplier statistics are significant 

at 1 % level confirming ARCH effects (Engle, 1982). These descriptives support the modelling 

South Africa using GARCH processes.  

Table 1: Summary statistics, SA JSE All Share Index returns (07/03/1995 to 08/25/2010

                                                                         Estimates                          Std. err   

  0.045   0.021  

  1.320   0.030  

               -0.479   0.253  

  5.944   1.852  

                      -12.628  

                         7.266 

 26.137     

 

  1781.218    

  411.880     

  560.927        

                                                                                                                                                                                  

11 

values for the White (2000)   and 

statistics as a crude guide to assessing statistical significance of the various 

is used in this paper. The 

observations. The daily stock 

returns are based on the closing prices. The descriptive statistics are reported in Table 1. These 

and autocorrelation consistent standard errors for the mean, 

standard deviation, skewness, and excess kurtosis. The computation of these statistics is based on 

(1995). The mean is significantly different from zero at 5 % level of 

significance. Daily stock returns appear quite volatile and exhibit strong evidence of excess 

Box statistics are robust to conditional heteroscedasticity and show 

However there is strong evidence of 

serial correlations in the squared stock returns. The Lagrange multiplier statistics are significant 

at 1 % level confirming ARCH effects (Engle, 1982). These descriptives support the modelling 

07/03/1995 to 08/25/2010)                                

             p-values                        

    

    

    

    

 0.161                          

 0.000   

 0.000 

 0.000 

                                                      



 

Note: Returns are defined as 100 times the log

to a test of the null hypothesis that the r autocorrelations are zero. Modified Ljung

conditional heteroscedasticity. ARCH Lagrange multiplier statistics correspond to a test of the

ARCH effects from lag 1 through q. 0.000 indicates the p values less than 0.0005.

 

 

 3.2  In-sample results 

 

The modified ICSS algorithm employed for our in

the unconditional volatility of stock market return in South Africa

December, 2008 and 15
th

 of July, 2009

due to the impact of the global financial crisis. Figure 1 below shows a plot of the stock ret

series and three-standard-deviation bands defined by the structural breaks identified by the 

modified ICSS algorithm.      

 

Figure 1: The JSE All Share Index and 

 

 

Most emerging markets like South Africa 

for most part of 2007 and 2008. However its impact began to be felt

African economy into a technical recession in Q1 2009. The economic slowdown adversely 

affected the performance of most listed equities on the bourse. This aggravated volatility in most 
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The modified ICSS algorithm employed for our in-sample test revealed two structural breaks in 

of stock market return in South Africa, specifically on 10

of July, 2009. Both structural breaks represent an increase in volatility 

due to the impact of the global financial crisis. Figure 1 below shows a plot of the stock ret

deviation bands defined by the structural breaks identified by the 

Figure 1: The JSE All Share Index and  standard deviation bands.  
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Box statistics correspond 

Box statistics are robust to 

null hypothesis of no 

sample test revealed two structural breaks in 

, specifically on 10
th
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Both structural breaks represent an increase in volatility 

due to the impact of the global financial crisis. Figure 1 below shows a plot of the stock returns 

deviation bands defined by the structural breaks identified by the 
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stock market indices on the bourse including the JSE All Share index. Government revenue also 

declined significantly across the year worsening by Q3 2009. Hence the second structural break 

in July 2009. This created the need for Government to scale up domestic borrowing from Q3 

2009. To address this government increased its net borrowing requirement R90.3 billion to 

R175.8 billion in October 2009. Both new and existing investors began to recomposed their 

portfolios, shifting away from listed equities which were already performing badly towards long 

term government bonds which peaked at R31.2 billion in Q4 2009 (JSE Review Report, 2010).  

Thus the South African financial market experienced two major structural breaks in December 

2008 and July 2009 as a result of the impact of the global financial crisis.   

 

Table 2 below shows the conditional volatility of the squared stock return series estimated using 

a standard QMLE GARCH (1, 1) model both over the full sample period and sub-sample 

periods.  

 

Table 2: Quasi Maximum Likelihood Estimation Results for GARCH (1, 1) Models                                                 

                                                                         Estimates                                         Std.err                        

GARCH (1, 1) full sample estimation results  

ω                          0.020      0.005   

α             0.111      0.011   

β                      0.883      0.011   

ω/(1 - α - β)           3.072      1.885  

 

GARCH (1, 1) sub-sample 1 estimation results   

ω                          0.020      0.005   

α             0.115      0.012   

β                      0.880      0.012   

ω/(1 - α – β)          4.386      4.704   

 

GARCH (1, 1) sub-sample 2 estimation results   

ω                          3.581      0.367   

α             0      0   

β                      0      0   

ω/(1 – α – β)          3.581      0.367   

 

GARCH (1, 1) sub-sample 3 estimation results   

ω                          0.058      0.041   

α             0.089      0.036   



 

β                     

ω/(1 – α – β)         

 

Notes: Table 2 reports the GARCH (1, 1) model estimations for the squared stock return series for the full sample and those for the different sub

samples defined by the structural breaks. The table also includes standard deviations of the estimates.   

 

The sub-samples are defined by the structu

The fitted full sample GARCH (1, 1) model is highly persistent with an estimate of 

about 0.994. The first sub-sample GARCH (1, 1) model also exhibits high persistence with an 

estimate of  +  = 0.995. The second sub

persistence, whiles the third sub-

an estimate of  + = 0.953. 

generally characterized by conditional heteroscedasticity

changes in the unconditional variance as reflected in 

structural breaks bringing about substantial shift in the intercept defined by 

under review. In addition the GARCH (1, 1) parameter estimates vary across sub

defined by the structural breaks. These in

volatility for the stock return and also confirm that structural breaks are an empirically relevant 

feature of stock market returns in South Africa. 

 

3.3 Out-of-sample results 

 

The out-of-sample period consists of the last 500 observations of the January 2 1995 to August 

31 2010 full sample period and covers the September 2 2008 to August 31 2010 period for South 

Africa.  Table 3 reports the out-of

and 120 days. The first row in each panel of the table reports the mean loss for the GARCH (1, 

1) expanding window model, whiles the remaining rows present the ratio of the mean  loss for 

each of the other models to the me

model with the lowest mean lost ratio under both the MSFE and MVaR criteria performs better 

than the other models in forecasting volatility. The table also reports 

the White (2000)  and Hansen (2005) 

window, RiskMetrics, and FIGARCH (1, 

  0.863     

  1.191     

model estimations for the squared stock return series for the full sample and those for the different sub

samples defined by the structural breaks. The table also includes standard deviations of the estimates.    

samples are defined by the structural breaks identified by the modified ICSS algorithm. 

The fitted full sample GARCH (1, 1) model is highly persistent with an estimate of 

sample GARCH (1, 1) model also exhibits high persistence with an 

= 0.995. The second sub-sample GARCH (1, 1) model shows absolutely no 

-sample GARCH (1, 1) model also shows high persistence with 

 These high levels of persistence show that the sub

generally characterized by conditional heteroscedasticity. Table 2 also shows some significant 

changes in the unconditional variance as reflected in ω/(1 - α - β). These changes are due to the 

breaks bringing about substantial shift in the intercept defined by ω

under review. In addition the GARCH (1, 1) parameter estimates vary across sub

defined by the structural breaks. These in-sample results show highly persistent co

volatility for the stock return and also confirm that structural breaks are an empirically relevant 

feature of stock market returns in South Africa.  

sample period consists of the last 500 observations of the January 2 1995 to August 

31 2010 full sample period and covers the September 2 2008 to August 31 2010 period for South 

of-sample volatility forecasting results over horizons of 1, 20, 60 

and 120 days. The first row in each panel of the table reports the mean loss for the GARCH (1, 

1) expanding window model, whiles the remaining rows present the ratio of the mean  loss for 

each of the other models to the mean loss for the GARCH (1, 1) expanding window model. The 

model with the lowest mean lost ratio under both the MSFE and MVaR criteria performs better 

than the other models in forecasting volatility. The table also reports p-values corresponding to 

and Hansen (2005)  statistics with the GARCH (1, 1) expanding 

window, RiskMetrics, and FIGARCH (1, d, 1) expanding window models serving as the 
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 0.307   

 0.307   

model estimations for the squared stock return series for the full sample and those for the different sub-

ral breaks identified by the modified ICSS algorithm. 

The fitted full sample GARCH (1, 1) model is highly persistent with an estimate of α + β of 

sample GARCH (1, 1) model also exhibits high persistence with an 

sample GARCH (1, 1) model shows absolutely no 

sample GARCH (1, 1) model also shows high persistence with 

levels of persistence show that the sub-samples are 

Table 2 also shows some significant 

). These changes are due to the 

breaks bringing about substantial shift in the intercept defined by ω over the period 

under review. In addition the GARCH (1, 1) parameter estimates vary across sub-samples 

sample results show highly persistent conditional 

volatility for the stock return and also confirm that structural breaks are an empirically relevant 

sample period consists of the last 500 observations of the January 2 1995 to August 

31 2010 full sample period and covers the September 2 2008 to August 31 2010 period for South 

esults over horizons of 1, 20, 60 

and 120 days. The first row in each panel of the table reports the mean loss for the GARCH (1, 

1) expanding window model, whiles the remaining rows present the ratio of the mean  loss for 

an loss for the GARCH (1, 1) expanding window model. The 

model with the lowest mean lost ratio under both the MSFE and MVaR criteria performs better 

values corresponding to 

statistics with the GARCH (1, 1) expanding 

, 1) expanding window models serving as the 



 

benchmark models and the two GARCH (1, 1) rolling window, GARCH (1, 1) weight

GARCH (1, 1) with breaks and moving average models serving as the competing models. 

 

From the out-of-sample results in Table 3, the competing models strictly perform better than all 

the benchmark models using the 

the lowest mean loss using the 

GARCH (1, 1) 0.50 rolling window and the GARCH (1, 1) with breaks models report the lowest 

mean loss ratio over the 1-day horizon. The GARCH (1, 1) 0.25 rolling window model performs 

better than all the benchmark models over the 20, 60 and 120 days horizons under the 

criterion. This proves that allowing for instabilities in GARCH (1, 1) models has be

of-sample volatility forecasting.  

higher forecasting horizons but performs relatively better than the GARCH (1, 1) weighted ML 

and the Moving average models. Among the benchmark models

better than the other benchmark models over the 1

However as the forecasting horizons increase the FIGARCH (1, 

benchmark models in all cases using the 

FIGARCH (1, d, 1) model better captures conditional heteroscedasticity described by long 

memory processes. The p-values corresponding to the Hansen (2005) 

White (2000) l statistics rejects the null hypothesis in favour of the alternative hypothesis that 

at least one of the competing models have superior predictive ability over the benchmark models 

in forecasting volatility in stock market returns.  

 

Using the  criterion, the benchmark models specifically the RiskMetrics Model (for s = 

60, 120) deliver the minimum mean loss ratios thereby outperforming all the competing models 

for higher forecast horizons. However for shorter forecast hori

models outperform the benchmark models. At s=1, the GARCH (1, 1)0.50 rolling window model 

delivers the lowest mean loss ratio, whiles for s=20, the GARCH(1, 1) 0.25 rolling window 

model delivers the lowest mean loss ratio.  

model performs better in all cases using the 

the Hansen (2005)  statistics and the White (2000) 

benchmark models and the two GARCH (1, 1) rolling window, GARCH (1, 1) weight

GARCH (1, 1) with breaks and moving average models serving as the competing models. 

sample results in Table 3, the competing models strictly perform better than all 

the benchmark models using the  loss function. None of the benchmark models delivers 

the lowest mean loss using the  loss function. Among the competing models, the 

GARCH (1, 1) 0.50 rolling window and the GARCH (1, 1) with breaks models report the lowest 

day horizon. The GARCH (1, 1) 0.25 rolling window model performs 

better than all the benchmark models over the 20, 60 and 120 days horizons under the 

criterion. This proves that allowing for instabilities in GARCH (1, 1) models has be

  The performance of GARCH (1, 1) with breaks worsens over 

higher forecasting horizons but performs relatively better than the GARCH (1, 1) weighted ML 

and the Moving average models. Among the benchmark models the RiskMetrics model performs 

better than the other benchmark models over the 1-day horizon under the  

However as the forecasting horizons increase the FIGARCH (1, d, 1) outperforms the rest of the 

benchmark models in all cases using the criterion. This confirms the literature that the 

1) model better captures conditional heteroscedasticity described by long 

values corresponding to the Hansen (2005)  statistics than the 

statistics rejects the null hypothesis in favour of the alternative hypothesis that 

at least one of the competing models have superior predictive ability over the benchmark models 

in forecasting volatility in stock market returns.   

criterion, the benchmark models specifically the RiskMetrics Model (for s = 

60, 120) deliver the minimum mean loss ratios thereby outperforming all the competing models 

for higher forecast horizons. However for shorter forecast horizons (s = 1, 20), the competing 

models outperform the benchmark models. At s=1, the GARCH (1, 1)0.50 rolling window model 

delivers the lowest mean loss ratio, whiles for s=20, the GARCH(1, 1) 0.25 rolling window 

model delivers the lowest mean loss ratio.  Among the benchmark models, the RiskMetrics 

model performs better in all cases using the  criterion. The p-values corresponding to 

statistics and the White (2000) l statistics again rejects the null
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hypothesis in favour of the alternative hypothesis that at least one of the competing models have 

superior predictive ability over the benchmark models in forecasting volatility in stock market 

returns.  This is consistent with the inference from the resu

 

Table 3 also shows a summary of out

(1, 1) expanding window model and MS

registers a higher mean loss ratio than the MS

criteria at shorter forecast horizons. However as the forecast horizon increases, the MS

GARCH (1, 1) delivers a higher mean loss ratio than the GJR

and criteria. These result

1) better captures the leverage effect in stock market return volatility than the GJR

1). However for longer horizons, the GJR

GARCH (1, 1) model in accurately capturing leverage effects in stock market return volatility.  

 

 

Table 3:  Summary of Out of Sample Forecasting Results                                                                       

s = 1     

     

GARCH (1, 1) expanding window  

RiskMetrics     

FIGARCH (1, d, 1) expanding window

GARCH (1, 1) 0.50 rolling window  

GARCH (1, 1) 0.25 rolling window  

GARCH (1, 1) weighted ML  

GARCH (1, 1) with breaks   

Moving average        

GJR-GARCH (1, 1) expanding window

MS-GARCH (1, 1) expanding window 

 

s = 20 

GARCH (1, 1) expanding window  

RiskMetrics     

FIGARCH (1, d, 1) expanding window

GARCH (1, 1) 0.50 rolling window  

GARCH (1, 1) 0.25 rolling window  

GARCH (1, 1) weighted ML  

GARCH (1, 1) with breaks   

Moving average        

GJR-GARCH (1, 1) expanding window

MS-GARCH (1, 1) expanding window 

 

 

hypothesis in favour of the alternative hypothesis that at least one of the competing models have 

superior predictive ability over the benchmark models in forecasting volatility in stock market 

returns.  This is consistent with the inference from the results under the  

Table 3 also shows a summary of out-of-sample forecasting results comparing the GJR

(1, 1) expanding window model and MS-GARCH (1, 1) models.  The GJR-GARCH (1, 1) model 

registers a higher mean loss ratio than the MS-GARCH (1, 1) model under both the

criteria at shorter forecast horizons. However as the forecast horizon increases, the MS

GARCH (1, 1) delivers a higher mean loss ratio than the GJR-GARCH (1, 1) under both 

criteria. These results show that for shorter horizons the MS

1) better captures the leverage effect in stock market return volatility than the GJR

1). However for longer horizons, the GJR-GARCH (1, 1) model performs better than the MS

accurately capturing leverage effects in stock market return volatility.  

Table 3:  Summary of Out of Sample Forecasting Results                                                                       

MSFE                  MVaR 

      

36.893 (0.879) [0.372]   0.173 

0.998 (0.867) [0.570]   1.012 

, 1) expanding window 1.015 (0.693) [0.097]   1.016 

0.995     0.995 

1.011     1.007 

1.029     1.017 

0.995     0.997 

1.290     1.262  

GARCH (1, 1) expanding window 1.417     1.989 

 1.002     1.031 

2327.75 (0.962) [1.000]   0.837 

1.176 (0.689) [0.260]   1.068 

, 1) expanding window 1.125 (0.787) [0.254]   1.072 

1.044     1.032 

1.005     1.024 

1.635     1.046 

1.029     1.028 

2.888     1.302 

GARCH (1, 1) expanding window 4.376     1.380 

 3704.21     0.997 
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 (0.768) [0.558] 

 (0.736) [0.382] 

 (0.705) [0.281] 

 

 

 

 

1.262   

 

 

 (1.000) [1.000] 

 (0.617) [0.106] 

 (0.682) [0.111] 

 

 

 

 

 

 

 



 

s = 60 

 

GARCH (1, 1) expanding window  

RiskMetrics     

FIGARCH (1, d, 1) expanding window

GARCH (1, 1) 0.50 rolling window  

GARCH (1, 1) 0.25 rolling window  

GARCH (1, 1) weighted ML  

GARCH (1, 1) with breaks   

Moving average        

GJR-GARCH (1, 1) expanding window

MS-GARCH (1, 1) expanding window 

 

     

 

s = 120 

 

GARCH (1, 1) expanding window  

RiskMetrics     

FIGARCH (1, d, 1) expanding window

GARCH (1, 1) 0.50 rolling window  

GARCH (1, 1) 0.25 rolling window  

GARCH (1, 1) weighted ML  

GARCH (1, 1) with breaks   

Moving average        

GJR-GARCH (1, 1) expanding window

MS-GARCH (1, 1) expanding window 

                                                                    

Note: Entries for the GARCH (1, 1) expanding window model give the mean loss for this model. Entries for the 

other models give the ratio of the mean loss for each model to the mean loss f

window model. Bold entries denote the model with the smallest mean loss among all of the models. P

White (2000) ) l (Hansen (2005) 

the null hypothesis that none of the five competing models (two GARCH (1,1) rolling window, GARCH (1,1) 

weighted ML, GARCH (1,1) with breaks, and moving average models) has a lower expected loss than the 

benchmark model indicated on the left against the one sided (upper

the competing models have a lower expected loss than the benchmark model; 0.000 indicates less than 0.0005. The 

table reports on the GJR-GARCH (1, 1) and the MS

table are the mean loss for each model to the mean loss for the GARCH (1, 1) expanding window model.  

 

4. Conclusion 

 

This paper investigates the empirical relevance of structural breaks in accurately forecasting the 

volatility of stock returns in South Africa using in

on the JSE Allshare index from 1995 to 2010. Results from 

modified ICSS algorithm identify two structural breaks in the unconditional volatility of the 

stock market return series in South Africa. These occurred in March and October 2009 

attributable to the impact of the global financ

27263.1 (0.758) [0.639]   1.504 

1.204 (0.663) [0.368]   1.001 

, 1) expanding window 0.954 (0.788) [0.039]   1.038 

0.939     1.010 

0.861     1.019 

3.852     1.073 

1.049     1.037 

1.944     1.153 

GARCH (1, 1) expanding window 2.661     0.908 

 2.414e+16    0.978 

MSFE     MVaR

Ratio     Ratio 

92405 (0.635) [0.107]   2.106 

1.505 (0.503) [0.088]   1.003 

, 1) expanding window 0.787 (0.699) [0.000]   1.067 

0.682     1.010 

0.619     1.016 

16.353     1.133 

1.080     1.042 

1.888     1.188 

GARCH (1, 1) expanding window 1.978     0.935 

 9.09640e+36    0.966 

                                                                     

Entries for the GARCH (1, 1) expanding window model give the mean loss for this model. Entries for the 

other models give the ratio of the mean loss for each model to the mean loss for the GARCH (1, 1) expanding 

window model. Bold entries denote the model with the smallest mean loss among all of the models. P

 ) statistics are given in brackets (box brackets) and correspond to a test of 

the null hypothesis that none of the five competing models (two GARCH (1,1) rolling window, GARCH (1,1) 

weighted ML, GARCH (1,1) with breaks, and moving average models) has a lower expected loss than the 

n the left against the one sided (upper-tail) alternative hypothesis that at least one of 

the competing models have a lower expected loss than the benchmark model; 0.000 indicates less than 0.0005. The 

GARCH (1, 1) and the MS-GARCH (1, 1) expanding windows models. The ratios in the 

table are the mean loss for each model to the mean loss for the GARCH (1, 1) expanding window model.  

This paper investigates the empirical relevance of structural breaks in accurately forecasting the 

volatility of stock returns in South Africa using in-sample and out-of-sample tests and daily data 

on the JSE Allshare index from 1995 to 2010. Results from our in-sample tests using the 

modified ICSS algorithm identify two structural breaks in the unconditional volatility of the 

stock market return series in South Africa. These occurred in March and October 2009 

attributable to the impact of the global financial crisis. In Q1 2009, the impact of the global 
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 (1.000) [1.000] 

 (0.928) [1.000] 

 (0.450) [0.008] 

 

 

 

 

 

 

  

Entries for the GARCH (1, 1) expanding window model give the mean loss for this model. Entries for the 

or the GARCH (1, 1) expanding 

window model. Bold entries denote the model with the smallest mean loss among all of the models. P-values for the 

correspond to a test of 

the null hypothesis that none of the five competing models (two GARCH (1,1) rolling window, GARCH (1,1) 

weighted ML, GARCH (1,1) with breaks, and moving average models) has a lower expected loss than the 

tail) alternative hypothesis that at least one of 

the competing models have a lower expected loss than the benchmark model; 0.000 indicates less than 0.0005. The 

(1, 1) expanding windows models. The ratios in the 

table are the mean loss for each model to the mean loss for the GARCH (1, 1) expanding window model.   

This paper investigates the empirical relevance of structural breaks in accurately forecasting the 

sample tests and daily data 

sample tests using the 

modified ICSS algorithm identify two structural breaks in the unconditional volatility of the 

stock market return series in South Africa. These occurred in March and October 2009 

ial crisis. In Q1 2009, the impact of the global 



 

financial crisis began to be felt on the South African economy. This had a strong impact on most 

listed equities on the bourse and resulted in increased volatility in most stock market indices on 

the bourse including the JSE All Share index. This volatility peaked in March 2009 (end 

Q1/2009) after which some improvements began to register. The economic slowdown also 

adversely affect Government revenue collection across the year resulting in increased domestic

borrowing by Government commencing in October 2009. Government increased its net 

borrowing requirement from R90.3 billion to R175.8 billion in October 2009. Both new and 

existing investors restructured their portfolios away from listed equities and toward

government bonds which peaked at R31.2 billion in Q4 2009 (JSE Review Report, 2010).   This 

explains the structural breaks identified by our in

The fitted full sample GARCH (1, 1) model and the sub

persistence with α + β ranging between 0.952 to 0.995 indicating that stock market returns in 

South Africa is characterised by conditional heteroscedasticity. This confirms that structural 

breaks are a relevant feature of stock market return volatility in South Africa and there

to be accounted for to enhance accuracy in volatility forecasts of stock market returns in South 

Africa. 

 

The out-of-sample tests also show that the quality of volatility forecasts of stock market returns 

improves when structural breaks are cons

rolling window models which accommodate structural breaks in most cases have superior 

predictive power under both the 

is corroborated by the results of the White (2000) and Hansen (2005) hypothesis tests which 

reject the null hypothesis in favour of the alternative hypothesis that a least one of the competing 

models has superior predictive power over the benchmark models.  The FIGAR

model that explicitly allows for long memory in stock returns volatility is not relevant in this 

case. The long memory evidence may therefore be spurious if structural breaks are not 

considered in the forecasting of volatility in stock market 

stock return volatility is characterised by clustering and leverage effects sometimes resulting in 

an asymmetric response of conditional volatility to return shocks (Rapach 

that the asymmetric GJR-GARCH (1, 1) model does not always outperform the MS

1) model in capturing leverage effect in stock return volatility. For shorter time horizons the MS

financial crisis began to be felt on the South African economy. This had a strong impact on most 

listed equities on the bourse and resulted in increased volatility in most stock market indices on 

including the JSE All Share index. This volatility peaked in March 2009 (end 

Q1/2009) after which some improvements began to register. The economic slowdown also 

adversely affect Government revenue collection across the year resulting in increased domestic

borrowing by Government commencing in October 2009. Government increased its net 

borrowing requirement from R90.3 billion to R175.8 billion in October 2009. Both new and 

existing investors restructured their portfolios away from listed equities and toward

government bonds which peaked at R31.2 billion in Q4 2009 (JSE Review Report, 2010).   This 

explains the structural breaks identified by our in-sample results in March and October 2009. 

The fitted full sample GARCH (1, 1) model and the sub-samples also exhibit high levels of 

ranging between 0.952 to 0.995 indicating that stock market returns in 

South Africa is characterised by conditional heteroscedasticity. This confirms that structural 

breaks are a relevant feature of stock market return volatility in South Africa and there

to be accounted for to enhance accuracy in volatility forecasts of stock market returns in South 

sample tests also show that the quality of volatility forecasts of stock market returns 

improves when structural breaks are considered in the process of estimation. The GARCH (1, 1) 

rolling window models which accommodate structural breaks in most cases have superior 

predictive power under both the  and  criteria than the benchmark models. This 

ated by the results of the White (2000) and Hansen (2005) hypothesis tests which 

reject the null hypothesis in favour of the alternative hypothesis that a least one of the competing 

models has superior predictive power over the benchmark models.  The FIGAR

model that explicitly allows for long memory in stock returns volatility is not relevant in this 

case. The long memory evidence may therefore be spurious if structural breaks are not 

considered in the forecasting of volatility in stock market returns. Consistent with literature, 

stock return volatility is characterised by clustering and leverage effects sometimes resulting in 

an asymmetric response of conditional volatility to return shocks (Rapach et al. 

GARCH (1, 1) model does not always outperform the MS

1) model in capturing leverage effect in stock return volatility. For shorter time horizons the MS
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including the JSE All Share index. This volatility peaked in March 2009 (end 

Q1/2009) after which some improvements began to register. The economic slowdown also 

adversely affect Government revenue collection across the year resulting in increased domestic 

borrowing by Government commencing in October 2009. Government increased its net 

borrowing requirement from R90.3 billion to R175.8 billion in October 2009. Both new and 

existing investors restructured their portfolios away from listed equities and towards long term 

government bonds which peaked at R31.2 billion in Q4 2009 (JSE Review Report, 2010).   This 

sample results in March and October 2009. 

les also exhibit high levels of 

ranging between 0.952 to 0.995 indicating that stock market returns in 

South Africa is characterised by conditional heteroscedasticity. This confirms that structural 

breaks are a relevant feature of stock market return volatility in South Africa and therefore needs 

to be accounted for to enhance accuracy in volatility forecasts of stock market returns in South 

sample tests also show that the quality of volatility forecasts of stock market returns 

idered in the process of estimation. The GARCH (1, 1) 

rolling window models which accommodate structural breaks in most cases have superior 

criteria than the benchmark models. This 

ated by the results of the White (2000) and Hansen (2005) hypothesis tests which 

reject the null hypothesis in favour of the alternative hypothesis that a least one of the competing 

models has superior predictive power over the benchmark models.  The FIGARCH (1, d, 1) 

model that explicitly allows for long memory in stock returns volatility is not relevant in this 

case. The long memory evidence may therefore be spurious if structural breaks are not 

returns. Consistent with literature, 

stock return volatility is characterised by clustering and leverage effects sometimes resulting in 

 2008). We found 

GARCH (1, 1) model does not always outperform the MS-GARCH (1, 

1) model in capturing leverage effect in stock return volatility. For shorter time horizons the MS-
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GARCH (1, 1) model performed better, while the GJR-GARCH was better suited to longer 

horizons, but in general, the asymmetric models fail to outperform the GARCH (1,1) model.    

 

Thus consistent with literature, structural breaks are a significant feature of volatility of stock 

market returns and need to be accounted for in empirical forecasts of volatility in stock market 

returns to enhance the accuracy of such forecasts. Finally, it is also relevant to employ multi-

period forecasts across different horizons, as the performance of volatility forecasting approaches 

vary across different horizons.   
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