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Recordings of elephant vocalisations can be used to determine the size and composition of

the herd, the sexual state, as well as the emotional condition of an elephant. Manual

analysis of recordings (by listening to these and by visual inspection of spectrograms) to

locate vocalisations is tedious. The automatic detection of vocalisations in recordings is

explored. Important signal characteristics of elephant vocalisations were identified from

spectrograms and a technique, based on the principles of existing voice activity detection

algorithms, was developed to exploit these. Results obtained suggest that the algorithm

can reliably detect elephant vocalisations from noisy recordings as long as the harmonic

structure of vocalisations is not buried in background noise.

ª 2010 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction (Payne, Thompson, & Kramer, 2003). Each elephant has
The best known elephant vocalisations are low frequency

rumbles or higher frequency trumpets (McComb, Reby, Baker,

Moss, & Sayialel, 2003), but researchers agree that elephants

can produce at least 10 different sound types (Clemins &

Johnson, 2003; Leong, Ortolani, Burks, Mellen, & Savage,

2002; Soltis, Leong, & Savage, 2005b). Most vocalisations are

produced in the form of rumbles with infrasonic pitch that is

too low to be easily perceived by humans.

The importance of elephant vocalisations to researchers in

the field of elephant behaviour is largely due to the abundance

of information that can be retrieved from it (Garstang, 2004;

Langbauer, 2000; Langbauer, Payne, Charif, & Thomas, 1989;

McComb et al., 2003; O’Connell-Rodwell, Arnason, & Hart,

2000; Poole, Tyack, Stoeger-Horwath, & Watwood, 2005;

Wood, McCowan, Langbauer, Viljoen, & Hart, 2005). The

number of rumbles observedwithin a certain time can be used

to determine the size of an unseen group of elephants as well

as the number of males, females and calves in such a group
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specific voice characteristics which means that individuals

may be recognised by their vocalisations (Clemins & Johnson,

2003; Clemins, Johnson, Leong, & Savage, 2005; Soltis et al.,

2005b). Information about the sexual state of individual

elephants can also be determined by analysing their rumbles

(Leong, Burks, Rizkalla, & Savage, 2005; Poole, 1999; Soltis,

Leong, & Savage, 2005a). As is the case with humans, some

parameters of rumbles canbeused todetermine the emotional

state of an elephant (Clemins et al., 2005; Soltis et al., 2005b).

These infrasonic rumbles have a fundamental frequency of

between 15 and 25 Hz and harmonics ranging several hundred

Hz (Langbauer, 2000). The harmonic component at approxi-

mately 125 Hz has been shown to be the most important

frequency needed for an elephant in the group to correctly

establish the identity of the caller (Langbauer, 2000). Fig. 1a

shows a spectrogram of a typical elephant rumble. The

harmonic nature of a typical elephant rumble is clear from the

spectrogram. Harmonics, appearing in the figure from around

2.3 se5.3 s, are indicated by horizontal lines at around 4 s in
@up.ac.za (J.J. Hanekom).
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Nomenclature

SNR Signal to Noise Ratio (dB)

ERB Equivalent Rectangular Bandwidth (Hz)

A normalised autocorrelation

c channel number

r filter output

N number of samples used for the calculation of the

autocorrelation

s number of autocorrelation lag steps

j centre position of current analysis window

Fs sampling frequency (Hz)

s number of lag steps to first peak of autocorrelation

p pitch (Hz)

P array containing pitch estimates for all samples

C array containing pitch estimates of rumbles only

L primary pitch difference limit in pitch tracking

algorithm (Hz)

LT secondary pitch difference limit in pitch tracking

algorithm (Hz)

S primary sample number limit in pitch tracking

algorithm

ST secondary sample number limit in pitch tracking

algorithm
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the spectrogram. Observations from available data (around

40 h of data) are that the spectral energy of a rumble is largely

located below 250 Hz.

Elephant rumbles in recordings are usually isolated by

experts who manually analyse spectrograms of recordings

and listen to them played back at higher rates, so that the
Fig. 1 e Spectrograms of elephant rumbles. (a). Spectrogram co

rumble (occuring from 2.3 s to 5.3 s) are indicated with lines betw

containing narrow band and broadband noise as well as eleph

unwanted periodic sounds.
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elephant sounds appear in the frequency range audible to

humans. This procedure is labour intensive and time

consuming, especially for studies where large numbers of

vocalisations are needed. In view of these limitations, the

possibility of adapting speech processing techniques that are

usually applied to human speech have been considered for the
ntaining a typical elephant rumble. Eight harmonics of the

een 3.8 s and 4.1 s (b). Spectrogram of a segment of sound

ant rumbles. (c). Spectrogram of a recording with loud
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extraction of elephant rumbles from recordings. Infrasonic

elephant rumbles are produced by vocal cords (Garstang, 2004;

McComb et al., 2003; Soltis et al., 2005b) so that it may be

expected that the resulting sounds would have characteristics

similar to voiced human speech (i.e., the harmonic nature

seen in Fig. 1a). In fact, studies have shown that most

mammalian vocal production and reception systems are very

similar (Bradbury & Vehrencamp, 1998; Titze, 1994).

Therefore, existing techniques used for voice activity

detection of human speech may also be suitable for elephant

rumble detection. Because of the harmonic nature of voiced

speech, one way of detecting the presence of speech during

a particular interval may be to apply a pitch detection algo-

rithm. The application of pitch detection algorithms used in

voice activity detectors described in the literature is often

limited to noiseless speech in a telecommunications context.

However, elephant rumble recordings usually contain

unwanted sounds, including sounds produced by other

animals, wind, elephants walking through the bush and other

sounds that occur in the wild. In addition, low frequency

sounds travel several kilometres, resulting in distant sounds

caused by motor vehicles of tourists occuring commonly in

wild elephant recordings. Therefore, a pitch detection algo-

rithm that is robust against noise is required to detect

elephant rumbles effectively in typical recordings.

The simplest time-domain pitch detection algorithm

counts the number of zero-crossings of the recorded signal.

However, this method is inaccurate when the signal contains

noise or, in the case of a harmonic signal, when the funda-

mental frequency is less energetic than any of the higher

harmonics. Autocorrelation analysis (Takagi, Seiyama, &

Miyasaka, 2000) works well with lower frequencies and when

harmonic structure is present. The addition of noise, however,

degrades the definition of the peaks of the autocorrelation

function. Similarly, addednoise in cepstrumbased techniques

(Kim&Chung, 2004; Noll, 1967) diminishes the peak indicating

the fundamental. Although frequency domain pitch detection

algorithms (Zhang, Zhang, Lin, & Quan, 2006) are computa-

tionally inexpensive, they are also not robust against noise.

More robust are time-frequency domain algorithms (Wu,

Wang, & Brown, 2003; Zhao & Ogunfunmi, 1999). They firstly

filter the original signal into sub-bands and then perform

time-domain analysis on the band-filtered signals, as is

believed to be done by the cochlea. Although this method is

computationally expensive, due to autocorrelations being

computed for every sub-band (as explained in more detail

later), its greater robustness against noise makes a sub-band

pitch estimation algorithm attractive for the present

application.
2. Methods

A number of recordings, with a total duration of around 40 h

made by the research group of Dr.William Langbauer Jr. in the

southern parts of the Kruger National Park, South Africa

during 2003, were made available for the present study. These

recordings were made in the mornings using a handheld

sound recorder. Some were of good quality, whilst the signal

to noise ratio (SNR) in others was poor.
Please cite this article in press as: Pieter J. Venter, Johan J. Han
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Properties identified from these recordings (Langbauer,

2000) were that rumbles usually contained a number of

harmonics, had a fundamental of between 15 and 25 Hz and

duration of 0.5e5 s, and usually commenced and ended at the

same pitch with a rise in pitch in the middle of the rumble.

These characteristics were used to assist in the develop-

ment of an algorithm to detect rumbles in recordings. The

proposed algorithm is based on the work of (Wu et al., 2003).

The first step in the proposed algorithmwas to obtain pitch

estimates. Recorded sound was filtered into bands using

a bank of fourth-order gammatone filters (Lee & Ellis, 2006)

evenly distributed on the equivalent rectangular bandwidth

(ERB) scale. These filters were adapted from human gamma-

tone filters, the latter being based on the particular sensitivity

of the human cochlea to pitch (Johannesma, 1972). The

elephant cochlea is somewhat larger than the human cochlea

and is sensitive in a frequency range of 17e10.5 kHz (Reuter,

Nummela, & Hemila, 1998). Evidence exists that the

elephant cochlea analyses pitch information, and indeed

analyses frequency information on a logarithmic scale similar

to the human ERB scale (Heffner &Heffner, 1982). Based on the

differences between the pitch ranges of the human voice and

elephant rumbles, the human ERB scale was shifted to lower

frequencies by a factor of 10 to obtain an adapted elephant

ERB scale. Asmay have been expected, pilot tests showed that

the rumble detection algorithm performed better using this

adapted ERB scale than when using the human ERB scale.

A bank of 32 gammatone filters with centre frequencies

evenly distributed on the shifted ERB scale between 12 Hz and

30 Hz were used. Gammatone filters are defined in Katsiamis,

Drakakis, and Lyon (2007), but for the present algorithm the

implementation of the filters was done using the appropriate

function from the Signal Processing Toolbox of Matlab R2007b

(The MathWorks, Natick, MA, USA).

After filtering, the normalised autocorrelation,A, of each of

the bands or channels, c, was calculated using Eq. (1) (Wu

et al., 2003). The output of a specific filter is denoted as rc(t)

in this equation, whileN is the number of samples used for the

calculation of the autocorrelation. The choice of N determines

the resolution of the processed data. A window size of 40 ms

was used, corresponding to N ¼ 128 samples in a signal

sampled at 3 kHz. The number of lag steps, s, used within the

autocorrelation determines the lowest frequency that may be

detected (as explained in the next paragraph) and needs to be

at least 300 samples to detect a frequency component of 10 Hz.

The position in the centre of the presently processed window

is denoted as j, and index n steps through this window of N

samples.

Acðj; sÞ ¼
PN=2

n¼�N=2 rcðjþ nÞrcðjþ nþ sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN=2
n¼�N=2 rcðjþ nÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN=2
n¼�N=2 rcðjþ nþ sÞ

q (1)

The numerator is the usual autocorrelation function, while

the denominator performs normalisation.

The autocorrelation calculation was performed on each of

the channels originating from the filter bank. The amplitude

of the first positive peak in the correlogram of each channel

gives an indication of the fundamental frequency component

present in that channel and the maximum amplitude of the

positive peaks in the correlogram gives an indication of the
ekom, Automatic detection of African elephant (Loxodonta
gineering (2010), doi:10.1016/j.biosystemseng.2010.04.001
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amount of noise present in the channel for the analysed

segment. Only channels with a maximum normalised

amplitude of more than 0.945 were selected; a threshold

established empirically in Wu et al. (2003). This method of

channel selection enabled the algorithm to detect faint

rumbles in recordings with severe broadband disturbances,

since only channels with energy at specific pure tone

frequencies were selected regardless of the strength of the

pure tone component. A summed correlogramwas calculated

by adding all the autocorrelations of the selected channels

together, forming large peaks where peaks in individual

channels coincided. The largest positive peak in the summed

correlogram was selected, and the corresponding pitch was

calculated using Eq. (2). The number of lag steps at which the

first positive peak is located can be used to determine the

pitch of the input signal,

p ¼ Fs

s
; (2)

with Fs the sampling frequency of the input signal and s the

number of lag steps before the first positive peak occurs.

An elephant rumble occurs fromaround 2.3 s to around 5.3 s

in thespectrogramshown inFig. 1a.Afterperforming thesignal

processing steps on this sound segment, the pitch estimates

shown in Fig. 2a were calculated from the maximum peak in

each of the summed correlograms. The pitch estimate was

noisy when no rumble was present, but smoother where the
Fig. 2 e Sub-band pitch detector outputs. (a). Output of step 1 e

in Fig. 1a before pitch tracking algorithm. (b). Output of step 2 f

detector when the spectrogram of Fig. 1b was analysed. (d). Outp

analysed.
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rumble occurred. There were, however, some data points (e.g.

around 4 s) where the algorithm detected pitch incorrectly.

Irrespective of the presence or absence of elephant

rumbles, pitch estimates were obtained for each channel for

all the recorded data. The second step of the algorithmwas to

(i) detect valid rumbles and extract only these sections con-

taining elephant rumbles while discarding pitch estimates

that were judged not to originate from rumbles, and (ii) to

construct continuous pitch tracks in these sections.

Comparing Figs. 1a and 2a, it should be noted that the sections

of the estimated pitch where rumbles were present were

smooth, but they also contained some discontinuities. This

was typical of the available recordings.

A number of techniques were considered as candidates to

track rumbles automatically from the pitch estimates. These

include computationally expensive techniques involving the

use of hidden Markov models (Paris & Jauffret, 2003; Xie &

Evans, 1993), neural networks (Adams & Evans, 1994) and

Kalman filters (Mustafa & Bruce, 2006). However, we noted

that sections containing valid pitches were easy to locate by

inspection from the pitch estimates of step 1. Mimicking this

process of detecting valid pitches by inspection, a simple

algorithm with low computational demands was developed.

In brief, the algorithm scans through the pitch estimates,

looking for smooth parts that indicates the presence of

a rumble and automatically discards discontinuities within an

identified smooth section if they are of short duration.
pitch estimates as calculated for the sound segment shown

or the sound segment of Fig. 1a. (c). Output of the pitch

ut of the pitch detector when the spectrogram of Fig. 1c was

ekom, Automatic detection of African elephant (Loxodonta
ngineering (2010), doi:10.1016/j.biosystemseng.2010.04.001
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More formally, this second step of the algorithm (pitch

tracking) performs the following steps. Pitch estimates are

stored in an array P, with an estimate being available for each

sample of the original signal. The objective is to create a new

array C containing only the pitch estimates of rumbles and

zeros elsewhere. If the difference in pitch value of S consec-

utive samples in P is less than L Hz, those samples are

considered part of a rumble and are transferred to C, Eq. (3).

CðkÞ ¼ PðkÞ for i � k � iþ S; (3)

where i is the index of the first sample of the rumble and k is

a sample counter. As soon as two successive samples differ by

more than L Hz, the next ST samples are examined to deter-

minewhether it is within LTHz of the last valid pitch estimate.

If so, all samples between these two valid pitch samples are

equated to the last valid pitch estimate (Eq.(4)) to form

a continuous pitch track,

CðkÞ ¼ Pðiþ nÞ for iþ n � k � iþ nþ ST; (4)

where the last valid sample was i þ n (n samples after the first

sample of the rumble). Otherwise, the end of the rumble has

been reached and all other samples set to zero. Parameter

values were determined empirically to match the available

data. They were S ¼ 14 samples, ST ¼ 10 samples, L ¼ 1 Hz and

LT ¼ 1.3 Hz.

Together, the two steps of the algorithm are referred to as

sub-band pitch detection in the rest of this article. The algo-

rithm (step 1, sub-band pitch estimation and step 2, pitch

tracking) was implemented in Matlab on a Windows PC with

a 2.8 GHz processor. It took approximately 1 min of processing

time for every minute of a recording to be analysed, although

the processing time depended on the choice of a number of

parameters. Halving the number of channels significantly

reduced the analysis time, while reducing the accuracy of the

algorithm only marginally. The autocorrelations that are per-

formed on each channel were certainly the most computa-

tionally expensive part of the algorithm. Using fewer points in

theautocorrelationfunctionreducedprocessing timeat thecost

of having a higher minimum detectable pitch. Based on these

considerations, the number of frequency channels arrived at

was 32 and the correlations were 300 samples long. The

sampling frequencyofa recordingdidnothavean impacton the

processing time as the input was always re-sampled to 3 kHz.

To establish a performance baseline, the proposed sub-

band pitch detector was compared to four other algorithms.

Each of thesemethods requires some tuning of parameters for

best results. In the energy threshold method, implemented

using Ishmael software (Mellinger, 2001), the energy in the

selected band of frequencies is determined and it is assumed

that a vocalisation is present in the recordingwhen the energy

is greater than a given threshold. Typically, the thresholdmay

be varied until an optimal value is found. This optimal value

will depend on the intensity of background noise in

a recording and on the distance from the elephants when the

recording was made. For the present tests, following the

suggestions in the help files of Ishmael, this threshold was set

to just above the average energy of the sound. This is probably

not an optimal setting for this particular problem.
Please cite this article in press as: Pieter J. Venter, Johan J. Han
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Matched filtering is a second method that may be used to

locate vocalisations. Here, the recording is cross-correlated

with a recording of a standard vocalisation. Matched filtering

is optimal for detecting a known signal in white Gaussian

noise (e.g. Van Trees, 1968), but may be expected to be less

successful when the signal to be detected differs somewhat

from the template as would be the case for elephant vocal-

isations. A wide variety of vocalisations may be tested to see

which would give the best results, but since elephant vocal-

isations are not identical, no single vocalisation will always

provide good results. For the present application, one partic-

ular vocalisation was selected as the template. Both matched

filtering and spectrogram correlation were tested in Ishmael

1.0 (free software, National Oceanic and Atmospheric

Administration (NOAA), Washington DC, USA).

Spectrogram correlation is related to matched filtering. In

this method, a spectrogram of the input recording is cross-

correlated with a synthetic time-frequency template that

mimics the pitch contour of the vocalisation. This technique

has been used successfully for the detection of whale sounds

in recordings (Mellinger & Clark, 2000). For the present work,

a template was created to resemble typical elephant rumble

data. Elephant rumbles typically rise in pitch initially, have

constant pitch in the middle of the rumble and then drop in

pitch towards the end of the rumble. Typical rumble durations

vary between 0.5 s and 5 s. However, not all rumbles follow this

pattern. The 3 s template for spectrogram correlation had

a linear rise in frequency from22.5 to 25Hzbetween0and0.5 s,

a steady frequency of 25 Hz until 2.5 s, and a linear decline in

frequency to 22.5 Hz over the last part of the template rumble.

Finally, a pitch tracking method, applicable to human

speech (Boersma, 1993) and also based on autocorrelation but

without the use of sub-bands, was tested using Praat 5.1.11

software (free software, Phonetic Sciences, University of

Amsterdam, The Netherlands; Boersma & Weenink, 2009). A

number of parameters must be specified; although applicable

to humans, the recommended values as suggested in Boersma

(1993) were used, with the exception of one parameter that

was adjusted for elephants. Specifically, a pitch floor of 15 Hz

and a pitch ceiling of 40 Hz were chosen; the (typical pitch

range of elephant rumbles.
3. Results

Fig. 3 characterises the proposed sub-band pitch detector and

compares it to the other methods explained earlier. As

explained earlier, each method was defined as a two-step

procedure. In the first step, pitch estimates were formed,

while pitch tracking was done in the second step. For all the

methods presented in this figure, the pitch track was obtained

in exactly the same way as explained before (Eqs. (3) and (4)).

Thus, the methods differed only in the pitch estimate step,

providing a way to compare them directly. In each case, the

input signal was an artificial harmonic complex with 25 Hz

fundamental and with a varying number of equally strong

harmonics band limited to 1500 Hz, and was presented in zero

mean additive white Gaussian noise.

Matched filter A contained an exact (but noiseless replica)

of the input 5-partial harmonic complex. Matched filter B
ekom, Automatic detection of African elephant (Loxodonta
gineering (2010), doi:10.1016/j.biosystemseng.2010.04.001
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showed the result if the matched filter is offset slightly e the

fundamental here was 24.8 Hz. Similarly, spectrogram corre-

lations A and B considered the effect when the duration of the

template and the rumble to be detected were either the same

(A) or where the actual rumble was shorter than the template

(B, 75% of template duration).

The SNR value, indicated on the ordinate, was that at

which the pitch tracking first failed. E.g., when 3 harmonics

were present, matched filter B fared worst (failed already at

10 dB SNR), while matched filter A performed best (pitch track

was maintained down to �8 dB SNR). Note also that under the

conditions of matched filter B, performance was best when no

harmonics were present. This is because the frequency errors

of the harmonics were greater than that of the fundamental.

The sub-band pitch detector performed almost as well as

the matched filter, but (as will be explained later) is better

suited to the conditions of the particular application. Fig. 3

shows that the pitch of a signal containing more than one

harmonic can be tracked in noisy conditions with the

proposed method. It may also be noted that the sub-band

pitch detector fares worst of all the consideredmethods when

no harmonics are present. It uses the sum of the autocorre-

lations of different channels to form a peak that is used for

pitch detection. When fewer than two harmonics are present,

the magnitude of this peak is not large enough to detect pitch

in noisy recordings. This observation is useful for ignoring

non-harmonic sounds.

The performance of the proposed algorithm on actual

recordings may be predicted by its characteristics shown in

Fig. 3, which indicates conditions under which a sound with

harmonic structure will be detected. The pitch tracking output

of step 2 when the sound segment of Fig. 1a was processed by

the sub-band pitch detection algorithm is shown in Fig. 2b.

This rumble possessed at least seven harmonics (Fig. 1a) and

background noise approximating white noise was present. As

expected from the characterisation curve in Fig. 3, the rumble

was accurately detected. In addition, the algorithmdetermined
Please cite this article in press as: Pieter J. Venter, Johan J. Han
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the beginning of the rumble to be at 2.4 s, the rumble end at

5.2 s, the lowest pitch to be 22.3 Hz and the highest pitch

24.8 Hz. As a comment, calculation of pitch cannot easily be

done by visual inspection of a spectrogram and may be valu-

able, since the pitch of a rumble can communicate information

about the emotional state of an elephant (Soltis et al., 2005b).

From Fig. 3, it can be seen that narrow band noises without

harmonic structure will allow detection of elephant rumbles.

Fig. 1b shows a spectrogram of a recording with narrow band

background noise present. Energetic components visible on

the spectrogram as lighter areas include horizontal white

lines visible between 20 and 60 Hz in the first 30 s as well as

from 50 s to 150 s, these being unwanted narrow band noises

produced by a car engine. The vertical lines visible throughout

the spectrogram at different intensities are broadband noises

typically caused by wind, breaking of branches or disturbance

of the microphone itself. Four elephant rumbles with clearly

defined harmonic structures can be seen on the spectrogram.

The first rumble is located at approximately 85 s, while the

other three rumbles are located in short succession starting at

approximately 125 s Fig. 2c shows the output obtained after

processing the recording with the sub-band pitch detector.

Unwanted noises have been rejected, while the harmonic

structures of the elephant rumbles have all been identified

and their pitches extracted.

With some restrictions, given below, the elephant rumble

detection algorithm reliably detected infrasonic elephant

rumbles in noisy conditions from the available recordings.

Unwanted low frequency sounds that did not have higher

harmonics, such as distantmotor vehicles, were also rejected.

However, it is clear from Fig. 3 that rumbles with weak

harmonic structure will not be detected reliably. These

rumbles are also hard to detect manually and are usually

rumbles that have been recorded from a long distance. Fig. 1c

shows the spectrogram of a recording with energetic unde-

sired frequency components at 50 Hz and 75 Hz, along with

the engine noises of a motor vehicle. Two elephant rumbles
ekom, Automatic detection of African elephant (Loxodonta
ngineering (2010), doi:10.1016/j.biosystemseng.2010.04.001
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occurred at 90 s and 100 s, but the energy of the unwanted

components appears stronger than those of the rumbles on

the spectrogram. The algorithm falsely detected (Fig. 2d) the

engine noises as rumbles (because of the presence of the

stronger harmonics) and at certain instants the pitch of the

unwanted frequency components as well. The last of the two

elephant rumbles was less faint and was correctly identified.

The quality of the recording of Fig. 1c was low. The sources

of the unwanted frequency components appear to have been

close to the microphone, while the elephant rumbles were

distant. A recording as poor as this is unlikely to occur if an

elephant call recording collar were to be used. Under these

conditions, it appears that unwanted sounds with strong

harmonics in the infrasonic band may cause false rumble

detections, while distant elephant rumbles, which have lost

their upper harmonics, may not be detected.

Finally, Fig. 4 shows the results from detections of actual

recording of rumbles. The rumbles used here had to be ana-

lysedmanually by inspecting spectrograms and by listening to

accelerated recordings of the data. In total, 4 h of analysed

data are reflected here, with the rumble detection task ranging

from easy to difficult in these recordings. The results from the

five methods are ordered from best to worst (i.e., most correct

detections to least correct detections) in Fig. 4. Note that as the

number of correct detections decreased, the number of false

detections and missed rumbles increased.
4. Discussion

When comparing to previous research, possibly the only other

published work that applied speech processing techniques to

elephant vocalisations were studies by Clemins and co-

workers (Clemins & Johnson, 2003; Clemins et al., 2005). Theirs

was a different application than the present: they performed

automatic classification of rumble type and speaker identifi-

cation on a collection of vocalisations using techniques typi-

cally used for automatic speech recognition of human speech.
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frequency cepstral coefficients as features, and speaker

recognition was achieved using hidden Markov models.

Similarly, techniques applicable to speech processing of

human speech may be applied to the present task of detecting

elephant rumbles from noisy recordings. Elephant rumbles are

not unique, in the sense that they do not differ greatly from

human speech in spectral structure. Both have a harmonic

structure that may be exploited to detect vocalisations in

noise. For example, in human speech, the harmonic structure

is important in auditory stream segregation (Bregman, 1999)

and this is taken advantage of in segregating simultaneous

voices is speech enhancement applications (Hu &Wang, 2004).

However, techniques that perform well under other circum-

stances do not necessarily performwell for the present task of

detecting elephant rumbles in noisy recordings.

Considering then the efficacy of the proposed sub-band

pitch detector in comparison to other previously applied

methods, Fig. 3 characterised the proposed method and

compared it to other methods. The figure shows that when

a signal contains a few harmonics, with the exception of

matched filter A, the sub-band pitch detector performs best.

For signal in detection in noise, a matched filter is optimal.

Thus, if the expected signal was known precisely, and the task

was simply to detect the presence of this signal in noise, the

matched filter would be expected to perform best. However,

elephant rumbles vary in fundamental, harmonics and dura-

tion. When the expected signal (or the matched filter

template) is slightly mistuned to the actual signal arriving in

noise, this method fails, as is clearly shown in Fig. 3. Thus,

matched filtering will work well when searching for a specific

rumble in noise, but will not work if the rumbles in the

recording differ, even slightly, from the template.

Spectrogram cross-correlation performs well when the

signal to be detected varies little in duration (A), but fails if the

template duration differs from the duration of the signal to be

detected (B). Although this method had previously been

applied successfully to whale sounds, the duration of a whale
pectogram
correlation

Energy
threshold

Correct detection
False detection
Missed call

oise when applied to recorded elephant rumbles.
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endnote segment varies with less than 0.139 s (Mellinger &

Clark, 2000). In contrast, elephant rumble duration in the

present recordings varied over a range of 0.5e5 s, which

makes spectrogram cross-correlation not ideal for this task.

The Boersma pitch detector (Boersma, 1993) was designed

for human voice, but has been slightly adapted for elephant

rumbles. This method works well for elephant rumbles with

different durations and pitches. However, periodic sounds

other than elephant rumbles (such as distant engine noises, or

other sounds without harmonics) are falsely detected as valid

pitches, as pitch is detected in noise even when no harmonics

are present.

The energy thresholding method is simple and performs

well as long asnoother energetic soundsappear in a recording.

However, this method cannot distinguish between harmonic

complexes (elephant rumbles) and other loud sounds in

recordings (e.g. elephants crashing through the bush, wind, or

other animal sounds). Also, faint rumbles are not detected.

Fig. 3 showed that the sub-band pitch detection algorithm

performed best when elephant rumbles in a recording have

three ormore clear harmonics. The algorithm could detect the

pitch of a sound with harmonic structure in an SNR as low as

�8 dB, which means that the algorithm should have good

rejection of broadband noise like that caused by wind. This

result also implies that the weakness of the algorithm lies in

its inability to reject noises with a harmonic structure.

Thus, of the methods compared here, the sub-band pitch

detector appears to be best suited for the task of detecting

elephant rumbles. This is confirmed in Fig. 4, where actual

rumbles from the recordings had to be detected. Although the

sub-band pitch detector didmiss some rumbles, faint rumbles

in the presence of noise sources with harmonic content, it

outperformed the other methods tested by some measure.

Although this cannot be deduced from Fig. 4, none of the other

techniques could detect the vocalisations that weremissed by

the sub-band pitch detector.

It should be noted that each of the methods requires some

hand-tuning to perform best. Most of the tuning is required in

step 2 (pitch tracking). Possibly, the pitch estimators

compared to the sub-band pitch estimator may have per-

formed better than shown in Fig. 4 if theywere properly tuned.

However, (i) Fig. 3 compares the methods directly (step 1 that

does the pitch estimation) without the need for the tuning in

step 2, and as such gives a good indication of which methods

provide the best pitch estimates for step 2, and (ii) the short-

comings of each of the methods discussed in the previous

paragraphs cannot be overcome with tuning.

The pitch tracking algorithm of step 2 (Eq. (1) and Eq. (2))

requires some further comments. Four parameters had to be

obtained empirically from the available data. In essence, these

parameters characterise the dynamics of pitch changes

during a typical rumble. Although some tuning was necessary

to obtain optimal parameters for the present data set, this is

not unlike any other parametric pitch tracking algorithm. For

example, if the pitch tracking were to be performed using

a Kalman filter, it would have been necessary to infer the

dynamics of typical rumble pitch tracks from available data in

order to define the Kalman filter’s internal model.

Finally, when two rumbles overlap in time, only the more

energetic rumble is identified. The algorithm may be adapted
Please cite this article in press as: Pieter J. Venter, Johan J. Han
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slightly to allow tracking of two pitch tracks simultaneously.

In the single-track algorithm, the sample in the summed

correlogram with the maximum value is used to calculate

each data point of the pitch estimate array. In the dual-track

version, the two peaks in each summed correlation with the

highest values are used to generate two pitch estimate arrays.

The estimates contained in these two arrays are then pro-

cessed in the same way as was the case for the single pitch

estimated array, but two pitch tracks are processed. This

allows for detecting overlapping rumbles within a recording.

Either the single or the dual pitch track algorithm may be

selected, depending on the need of the user.
5. Conclusions

A collection of typical elephant rumble recordings were ana-

lysed, where “typical” was defined as recordings containing

only natural noises, but with the inclusion of sounds from far-

off motor vehicles occasionally occuring. However, it should

be noted that both the manual detection of elephant rumbles

and the definition of “typical” elephant rumble recordings are

subjective to some extent.

Irrespective of this integral subjectivity, some generalisa-

tions may be made about the proposed sub-band pitch

detection algorithm. In summary, sub-band pitch detection

worked reliably for tracking of elephant rumbles in most

conditions tested, but not in all. Weak rumbles were not

detected when their harmonic structure was lost, and false

alarms increased when the pitch of overlapping rumbles had

to be detected using the dual-track option of the algorithm. In

applications where all possible candidate rumbles need to be

detected in a recording, the dual track algorithm may prove

valuable despite the likely increase in false alarms.

The practical value of the proposed elephant rumble

detection algorithm will only be established through exten-

sive testing with recorded data and comparison with manual

identification of rumbles. A next step that may have potential

value to elephant call researchers would be to automatically

detect rumbles from a large collection of unprocessed

recordings (like those obtained from an elephant recording

collar), and automatically isolate, label (e.g. with time stamps)

and save detected calls to individual sound files. The algo-

rithm may also provide a foundation for further signal pro-

cessing steps, e.g. the automatic classification of rumble types

and speaker identification, as has been carried out by Clemins

and Johnson (2003) using previously identified rumbles.
r e f e r e n c e s

Adams, G. J., & Evans, R. J. (1994). Neural networks for frequency
line tracking. IEEE Transactions on Signal Processing, 42, 936e941.

Boersma, P. (1993). Accurate short-term analysis of the
fundamental frequency and the harmonics-to-noise ratio of
a sampled sound. Proceedings of the Institute of Phonetic Sciences,
17, 97e110.

Boersma, P., & Weenink, D. (2009). Praat: doing phonetics by
computer (version 5.1.11) [computer software]. Available from
http://www.praat.org/.
ekom, Automatic detection of African elephant (Loxodonta
ngineering (2010), doi:10.1016/j.biosystemseng.2010.04.001

http://www.praat.org/


b i o s y s t em s e n g i n e e r i n g x x x ( 2 0 1 0 ) 1e9 9

ARTICLE IN PRESS
Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of animal
communications. Sinauer Associates.

Bregman, A. S. (1999). Auditory scene analysis. The perceptual
organization of sound (2nd ed.). Cambridge, Massachusetts: MIT
Press.

Clemins, P. J., & Johnson, M. T. (2003). Application of speech
recognition to African elephant (Loxodonta Africana)
vocalizations. In Proceedings of ICASSP (pp 484e487). Hong
Kong: IEEE International Conference on Acoustics, Speech and
Signal Processing.

Clemins, P. J., Johnson, M. T., Leong, K. M., & Savage, A. (2005).
Automatic classification and speaker identification of African
elephant (Loxodonta africana) vocalizations. Journal of the
Acoustical Society of America, 117, 956e963.

Garstang, M. (2004). Long-distance, low-frequency elephant
communication. Journal of Comparative Physiology A:
Neuroethology, Sensory, Neural, and Behavioral Physiology, 190,
791e805.

Heffner, R. S., & Heffner, H. E. (1982). Hearing in the elephant
(Elephas maximus): absolute sensitivity, frequency
discrimination, and sound localization. Journal of Comparative
and Physiological Psychology, 96, 926e944.

Hu, G., & Wang, D. L. (2004). Monaural speech segregation based
on pitch tracking and amplitude modulation. IEEE Transactions
on Neural Networks, 15, 1135e1150.

Johannesma, P. I. M. (1972). The pre-response stimulus ensemble
of neurons in the cochlear nucleus. In Symposium on hearing
theory (pp 58e69), Eindhoven, Holland.

Katsiamis, A. G., Drakakis, E. M., & Lyon, R. F. (2007). Practical
gammatone-like filters for auditory processing. Eurasip Journal
on Audio, Speech, and Music Processing. art. no. 63685.

Kim, Y. J., & Chung, J. H. (2004). Pitch synchronous cepstrum for
robust speaker recognition over telephone channels.
Electronics Letters, 40, 207e209.

Langbauer, J. (2000). Elephant communication. Zoo Biology, 19,
425e445.

Langbauer, W. R., Jr., Payne, K. B., Charif, R. A., & Thomas, E. M.
(1989). Responses of captive African elephants to playback of
low-frequency calls. Canadian Journal of Zoology, 67,
2604e2607.

Lee, K., & Ellis, D. P. W. (2006). Voice activity detection in personal
audio recordings using autocorrelogram compensation. In
Interspeech 2006 and ninth international conference on spoken
language processing (pp 1970e1973), Pittsburgh, PA, USA.

Leong, K. M., Burks, K., Rizkalla, C. E., & Savage, A. (2005). Effects
of reproductive and social context on vocal communication in
captive female African elephants (Loxodonta africana). Zoo
Biology, 24, 331e347.

Leong, K. M., Ortolani, A., Burks, K. D., Mellen, J. D., & Savage, A.
(2002). Quantifying acoustic and temporal characteristics of
vocalizations for a group of captive African elephants
Loxodonta africana. Bioacoustics, 13, 213e231.

McComb, K., Reby, D., Baker, L., Moss, C., & Sayialel, S. (2003).
Long-distance communication of acoustic cues to social
identity in African elephants. Animal Behaviour, 65, 317e329.

Mellinger, D. K. (2001). Ishmael: integrated system for holistic
multi-channel acoustic exploration and localization (version
1.0) [computer software]. Available from http://www.pmel.
noaa.gov/vents/acoustics/whales/ishmael/index.html.
Please cite this article in press as: Pieter J. Venter, Johan J. Han
africana) infrasonic vocalisations from recordings, Biosystems En
Mellinger, D. K., & Clark, C. W. (2000). Recognizing transient low-
frequency whale sounds by spectrogram correlation. Journal of
the Acoustical Society of America, 107, 3518e3529.

Mustafa, K., & Bruce, I. C. (2006). Robust formant tracking for
continuous speech with speaker variability. IEEE Transactions
on Audio, Speech and Language Processing, 14, 435e444.

Noll, A. M. (1967). Cepstrum pitch determination. Journal of the
Acoustical Society of America, 41, 293e309.

O’Connell-Rodwell, C. E., Arnason, B. T., & Hart, L. A. (2000).
Seismic properties of Asian elephant (Elephas maximus)
vocalizations and locomotion. Journal of the Acoustical Society of
America, 108, 3066e3072.

Paris, S., & Jauffret, C. (2003). Frequency line tracking using HMM-
based schemes. IEEE Transactions on Aerospace and Electronic
Systems, 39, 439e449.

Payne, K. B., Thompson, M., & Kramer, L. (2003). Elephant calling
patterns as indicators of group size and composition: the basis
for an acoustic monitoring system. African Journal of Ecology,
41, 99e107.

Poole, J. H. (1999). Signals and assessment in African elephants:
evidence from playback experiments. Animal Behaviour, 58,
185e193.

Poole, J. H., Tyack, P. L., Stoeger-Horwath, A. S., & Watwood, S.
(2005). Elephants are capable of vocal learning. Nature, 434,
455e456.

Reuter, T., Nummela, S., & Hemila, S. (1998). Elephant hearing.
Journal of the Acoustical Society of America, 104, 1122e1123.

Soltis, J., Leong, K., & Savage, A. (2005a). African elephant vocal
communication I: antiphonal calling behaviour among
affiliated females. Animal Behaviour, 70, 579e587.

Soltis, J., Leong, K., & Savage, A. (2005b). African elephant vocal
communication II: rumble variation reflects the individual
identity and emotional state of callers. Animal Behaviour, 70,
589e599.

Takagi, T., Seiyama, N., & Miyasaka, E. (2000). Method for pitch
extraction of speech signals using autocorrelation functions
through multiple window lengths. Electronics and
Communications in Japan, Part III: Fundamental Electronic Science
(English Translation ofDenshi TsushinGakkai Ronbunshi), 83, 67e79.

Titze, I. R. (1994). Principles of voice communication. Englewood
Cliffs, NJ: Prentice-Hall.

Van Trees, H. L. (1968)Detection, estimation and modulation theory,
Vol. 1. New York: Wiley.

Wood, J. D., McCowan, B., Langbauer, J., Viljoen, J. J., & Hart, L. A.
(2005). Classification of African elephant Loxodonta africana
rumbles using acoustic parameters and cluster analysis.
Bioacoustics, 15, 143e161.

Wu, M., Wang, D. L., & Brown, G. J. (2003). A multipitch tracking
algorithm for noisy speech. IEEE Transactions on Speech and
Audio Processing, 11, 229e241.

Xie, X., & Evans, R. J. (1993). Multiple frequency line tracking with
hidden Markov models e further results. IEEE Transactions on
Signal Processing, 41, 334e343.

Zhang, T., Zhang, Z., Lin, X., & Quan, J. (2006). Power spectrum
reprocessing algorithm for pitch detection of speech. Jisuanji
Gongcheng/Computer Engineering, 32, 1e3.

Zhao, W. W., & Ogunfunmi, T. (1999). Formant and pitch
detection using time-frequency distribution. International
Journal of Speech Technology, 3, 35e49.
ekom, Automatic detection of African elephant (Loxodonta
gineering (2010), doi:10.1016/j.biosystemseng.2010.04.001

http://www.pmel.noaa.gov/vents/acoustics/whales/ishmael/index.html
http://www.pmel.noaa.gov/vents/acoustics/whales/ishmael/index.html

	Automatic detection of African elephant (Loxodonta africana) infrasonic vocalisations from recordings
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	References


