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a b s t r a c t

In this paper, we consider a plate–beam system inwhich the Reissner–Mindlin platemodel
is combined with the Timoshenko beam model. Natural frequencies and vibration modes
for the system are calculated using the finite element method. The interface conditions
at the contact between the plate and beams are discussed in some detail. The impact of
regularity on the enforcement of certain interface conditions is an important feature of the
paper.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In applications, structures consisting of linked systems of elastic bodies are encountered. The modelling and control of
such systems are clearly of great practical importance, as pointed out in early contributions [1–4].
Our concern in this paper is systems where beams are connected to plates. Examples of recent publications are [5–9]. In

all these papers, classical plate and beam theories are used. As pointed out in the conclusion of [7], it is an ongoing process
to find better models. The aim is to determine a sufficiently accurate model for a given application, without it being too
complex.
The limitations of the Kirchhoff and Euler–Bernoulli theories are well known – even if rotary inertia is included – and

plate–beam models involving improved theories need to be considered. Combining the Reissner–Mindlin plate model and
the Timoshenko beammodel can be seen as a first step towards a better model, while still avoiding the complexities (not to
mention computational effort) of a fully three dimensional model.
A Reissner–Mindlin–Timoshenko (RMT) plate–beam system is extremely complex compared to a Kirchhoff–Euler–

Bernoulli (KEB) system. This is due to the presence of five partial differential equations instead of two (for a single beam)
and the intricate geometrical constraints at the interfaces. Implementation of the Finite Element Method poses a number of
difficulties not present in the case of a plate–beam system using classical theories. The first difficulty concerns decisions to
enforce certain interface conditions. Secondly, the assembly of mass and stiffness matrices is more involved.
In [7] a KEB plate–beam system is investigated, and it is shown that introducing rotary inertia into the model does not

cause significant change in the eigenvalues. An initial aim of this paper is to compare the eigenvalues of the RMT plate–beam
system with those of the KEB plate–beam system, to determine the influence of shear.
Secondly, we investigate the effect of the regularity of the solution (and test functions) on the finite element calculations

and results. We compare different options for dealing with the forced interface conditions.
Finally, we compare the natural frequencies of an RMT plate–beam system as the thickness of the supporting beams is

increased, with the natural frequencies of a rigidly supported Reissner–Mindlin plate. In [7] a similar comparison is done
for the KEB plate–beam system.
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Section 2 contains the RMT plate–beam model. A dimensionless form of the model is derived in Section 3. In Section 4
we show how the variational form of the model is obtained directly from the different equations of motion. This method for
obtaining the variational form deals efficiently with the boundary conditions and the interface conditions. Also in Section 4,
we discuss the regularity of the solution or, rather, the possible lack of regularity. Implementation of the forced interface
conditions is postponed to the discrete version of the problem, where different options are considered. The associated
eigenvalue problem and its Galerkin approximation are derived in Section 5 and options for dealing with the interface
conditions are presented. Numerical results are presented in Section 6.

2. Mathematical model

2.1. The Reissner–Mindlin model for a plate

Consider small transverse vibration of a uniform plate with thickness h and density ρ. For a right hand system of unit
vectors e1, e2 and e3, the reference configuration for the plate is a domainΩ in the e1e2-plane. The transverse displacement
of x at time t is denoted byw(x, t) e3.
In the Reissner–Mindlin model, the transverse line segment at x is free to rotate. The angle between the line segment

(‘‘material line’’) and the perpendicular to the plane is denoted byψ(x, t). The angle between the projection of the material
line in the plane and the unit vector e1 isφ(x, t) (see [10, Sec. 3.2, Sec. 3.5]). Consequently the orientation of the line segment
is given by the vector

sinψ cosφ e1 + sinψ sinφ e2 + cosψ e3 ≈ ψ cosφ e1 + ψ sinφ e2 + e3.
This linear approximation is used to derive the equations of motion (see [11] and [10, p. 152]). We use the notation

ψ = ψ1 e1 + ψ2 e2 = ψ cosφ e1 + ψ sinφ e2.
Equations of motion

ρh∂2t w = divQ + q, (1)

ρI∂2t ψ = divM − Q , (2)

where I = h3/12 is the length moment of inertia. The vector Q represents a shear force density (force per unit length) and q
the transverse external load. The tensor (matrix)M =

[
M11 M12
M21 M22

]
, represents moment densities (moment per unit length)

and divM is a vector with components
[divM]i = ∂1Mi1 + ∂2Mi2 for i = 1 and 2.

Constitutive equations
Hooke’s law is used, as well as the assumptions that the vectors ψ and ∇w are small (see [10, p. 61], [11]).

Q = κ2Gh(∇w + ψ), (3)

M =
1
2
D
[
2
(
∂1ψ1 + ν∂2ψ2

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)
2
(
∂2ψ2 + ν∂1ψ1

) ]
, (4)

where G is the shear modulus and κ2 a correction factor. D is a measure of stiffness for the plate and is given by D =
EI/(1−ν2), where E is Young’s modulus and ν Poisson’s ratio. The value of κ2 depends on ν and ranges almost linearly from
0.76 to 0.91 as ν increases from 0 to 0.5. (See [11], where a detailed explanation is given. It is also mentioned that Reissner
used κ2 = 5/6.)
The equations of motion and the constitutive equations, above, are known as the Reissner–Mindlin plate model. The

constitutive equations may be substituted into the equations of motion, leading to a system of three partial differential
equations (see [10, p. 152] and [11]). In our approach, these partial differential equations are not used.

2.2. The Timoshenko model for a beam

Consider small transverse vibration of a uniform beam with density ρb and cross sectional area A. The reference
configuration for the beam is the interval [0, `] on the real line. The transverse displacement of x at time t is denoted by
wb(x, t) and the angle due to rotation of a cross section by φb(x, t).
Equations of motion

ρbA∂2t wb = ∂xV + P, (5)

ρbIb∂2t φb = ∂xMb + V + L, (6)

where Ib denotes the area moment of inertia, V the shear force and Mb the bending moment. (See [12, p. 337–9],
[13, p. 322–3] and [14, p. 336–8] for more detail.) External loads are a force density P and a moment density L. In the
plate–beam model, L and P are due to interaction with the plate.
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Fig. 1. Reference configuration of the plate–beam system.

Constitutive equations
Hooke’s law is used, as well as the assumptions that ∂xwb and φb are small.

V = κ2bGbA(∂xwb − φb), (7)

Mb = EbIb∂xφb, (8)
where Eb denotes Young’s modulus, Gb the shear modulus and κ2b is a correction factor which depends on the shape of the
cross section. The values of κ2b range between 0.5 and 1 (see [15] or [16, p. 173]).
The equations ofmotion and the constitutive equations above are known as the Timoshenko beammodel. The constitutive

equations may be substituted into the equations of motion, leading to a system of two partial differential equations.

2.3. The RMT plate–beam system

Consider small transverse vibration of a thin rectangular plate supported by identical beams at two opposing sides and
rigidly supported at the remaining sides. The beams are supported at their endpoints. Assume, furthermore, the case of free
vibration, i.e. q = 0. The displacement for the system is measured with respect to the equilibrium state. (Due to gravity, the
equilibrium state is not the same as the undeformed state.) It is assumed that the plate remains in contact with the beams
and supporting structure at all times.
The reference configuration for the plate is the rectangle Ω , where 0 ≤ x1 ≤ ` and 0 ≤ x2 ≤ a. The plate is rigidly

supported at x1 = 0 and x1 = `. These sections of the boundary of Ω are denoted by Σ0 and Σ1 respectively. The plate
is supported by beams at x2 = 0 and x2 = a and these sections are denoted by Γ0 and Γ1 respectively. Fig. 1 depicts this
reference configuration. The shaded areas denote the beams.
For the mathematical model, we use the Reissner–Mindlin plate theory and the Timoshenko beam theory.
OnΩ , the equations of motion (1) and (2) are satisfied, and on Γ0 and Γ1, the two sets of equations of motion are given

by (5) and (6). In (5) P is a force density and in (6) L represents amoment density, both transmitted from the plate to a beam.
Boundary conditions onΣ0 andΣ1
On these sections of the boundary, the conventional homogeneous boundary conditions for a rigidly supported plate are

used, i.e.
w = 0, ψ2 = 0 and Mn · n = 0, (9)

where n is the unit exterior normal (see [10, p. 66]). The third condition reduces toM11 = 0.
Interface conditions on Γ0 and Γ1
On Γ0 and Γ1 the interaction between the plate and the beams is considered. The interface conditions are given in [17]

for a general case. For this special case, they reduce to
wb(·, t) = w(·, 0, t) on Γ0, wb(·, t) = w(·, a, t) on Γ1, (10)
φb(·, t) = −ψ1(·, 0, t) on Γ0, φb(·, t) = −ψ1(·, a, t) on Γ1. (11)

The interface conditions for the force densities and moment densities on Γ0 and Γ1 are given by
Q · n = −P, (12)
Mn · τ = L, (13)
Mn · n = 0, (14)

where τ is the unit tangent oriented in such a way that Ω is on the left hand side of τ. For a detailed explanation of the
momentsMn · n andMn · τ, see [10, p. 66].
Conditions at the endpoints of Γ0 and Γ1
At the endpoints of Γ0 and Γ1 we have the obvious boundary conditions for supported beams, namely
wb = 0 and Mb = 0. (15)

Remarks
1. Note the difference in sign convention for measuring the angles ψ1 and φb in the plate and beam models.
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2. Care should be taken to also incorporate the difference between sign conventions for moments in the plate and beam
models. The beam equations for Γ1 are derived for a beam oriented from left to right. When applying the interface
condition (13) on Γ1, the moment L has to be replaced by−L.

3. The anglesψ and φb do not present physical realities but convenient averages, and it is not obvious what the geometrical
constraints should be. The interface conditions (10) and (11) are based on the idea of rigid rotations and conform to
standard practices.

3. Dimensionless form

We introduce the dimensionless variables

τ =
t
t0
, ξ1 =

x1
`
and ξ2 =

x2
`
,

where t0 must still be specified.
The dimensionless reference configuration for the plate is a rectangleΩ where 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ a/`.
Using x = (x1, x2) and ξ = (ξ1, ξ2), the dimensionless variables are

w∗(ξ, τ ) =
w(x, t)
`

, ψ∗(ξ, τ ) = ψ(x, t),

Q ∗(ξ, τ ) =
Q (x, t)
`Gκ2

, M∗(ξ, τ ) =
M(x, t)
`2Gκ2

and q∗(ξ, τ ) =
q(x, t)
Gκ2

.

The dimensionless constants are given by

hp =
h
`
, Ip =

h3

12`3
and βp =

`3Gκ2

EI
.

The constant hp denotes the dimensionless thickness of the plate and Ip the dimensionless length moment of inertia.

We choose t0 = `
√

ρ

Gκ2
(for convenience) and use the original notation for the corresponding dimensionless quantities.

The equations of motion for the plate model and constitutive equations in dimensionless form are presented below.
Reissner–Mindlin plate model

hp∂2t w = divQ + q, (16)

Ip∂2t ψ = divM − Q , (17)

Q = hp
(
∇w + ψ

)
, (18)

M =
1

2βp(1− ν2)

[
2
(
∂1ψ1 + ν∂2ψ2

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)
(1− ν)

(
∂1ψ2 + ∂2ψ1

)
2
(
∂2ψ2 + ν∂1ψ1

) ]
(19)

Classical plate model
For classical plate theory, ψi is replaced by −∂iw and the constitutive equation for Q is redundant. This is sometimes

referred to as the Kirchhoff plate model. Generally the rotary inertia term in (17) is ignored.
In addition, to deal with the beam model, set ξ = x/` and

w∗b (ξ , τ ) =
wb(x, t)
`

, φ∗b (ξ , τ ) = φb(x, t), P∗(ξ , τ ) =
P(x, t)
`Gκ2

,

V ∗(ξ , τ ) =
V (x, t)
`2Gκ2

, M∗b (ξ , τ ) =
Mb(x, t)
`3Gκ2

and L∗(ξ , τ ) =
L(x, t)
`2Gκ2

.

Note that the parameters of the plate are used for the scaling.
Timoshenko beam model

η1∂
2
t wb = ∂xV + P, (20)

η1∂
2
t φb = αb(∂xMb + V + L), (21)

V = η2(∂xwb − φb), (22)
βbMb = η2∂xφb. (23)

The dimensionless constants αb and βb are

αb =
A`2

Ib
, βb =

AGbκ2b `
2

EbIb
.

The constantαb is subject to significant variation. If r denotes the radius of gyration,we have αb = A`2/Ib = `2/r2. However,
the ratio βb/αb does not varymuch. It depends on the elastic constants and the shear correction factor κ2b that is determined
by the shape of the cross section. Realistic values for βb/αb range between 1/6 and 1/2.
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The two additional dimensionless constants η1 and η2 express ratios for the material properties and the geometrical
properties of the plate and the beams:

η1 =

(
ρb

ρ

)(
A
`2

)
and η2 =

(
Gb
G

)(
κ2b

κ2

)(
A
`2

)
.

Euler–Bernoulli beam model
For the classical beam model, φb is replaced by ∂xwb, the rotary inertia term in (21) is ignored and the constitutive

equation for V is redundant.
The vibration problem for the plate–beam system is given by the following equations.

Problem RMT
Equations of motion for the plate: (16) and (17) onΩ .
Constitutive equations for the plate: (18) and (19) onΩ .
Equations of motion for the beams: (20) and (21) on Γ0 and Γ1.
Constitutive equations for the beams: (22) and (23) on Γ0 and Γ1.
Boundary conditions: (9) onΣ0 andΣ1.
Interface conditions: (10) to (14) on Γ0 and Γ1.
Endpoint conditions: (15) at the endpoints of Γ0 and Γ1.

Simplified model
A simplified model is obtained when the Kirchhoff plate model and the Euler–Bernoulli beammodel are used. Formally,

this model problem can be derived from Problem RMT by replacing ψi by −∂iw and φb by ∂1wb and ignoring the rotary
inertia terms. We refer to this as Problem KEB for the purpose of comparison.

4. Variational form of Problem RMT

For any function v,∫∫
Ω

(divQ )vdA = −
∫∫

Ω

Q · ∇vdA+
∫
∂Ω

(Q · n)vds. (24)

For any vector valued function φ = [φ1 φ2]T we have∫∫
Ω

divM · φ dA = −
∫∫

Ω

tr(MΦ)dA+
∫
∂Ω

Mn · φ ds, (25)

where Φ =
[
∂1φ1 ∂2φ1
∂1φ2 ∂2φ2

]
and ‘‘tr’’ denotes the trace of the matrix.

Test functions
Choose spaces of test functions T1(Ω), T2(Ω) and T (I), with

T1(Ω) =
{
v ∈ C1(Ω̄) | v = 0 on Σ̄0 and Σ̄1

}
,

T2(Ω) =
{
φ = [φ1 φ2]

T
| φ1, φ2 ∈ C1(Ω̄), φ2 = 0 on Σ̄0 and Σ̄1

}
,

T (I) = {v ∈ C1[0, 1] | v(0) = v(1) = 0}.

Combining the first equation of motion (16) for the plate, with (24) yields that

hp

∫∫
Ω

∂2t wvdA+
∫∫

Ω

Q · ∇vdA−
∫
∂Ω

(Q · n)vds = 0 (26)

for each v ∈ T1(Ω).
It follows from the first equation of motion (20) for the beam, using integration by parts, that

η1

∫ 1

0
∂2t wbvdx+

∫ 1

0
Vv′dx =

∫ 1

0
Pvdx (27)

for each v ∈ T (I). The subscripts ‘‘0’’ and ‘‘1’’ will be used to distinguish between quantities associatedwith the two different
beams.
To accommodate the interface condition (10), choose v0 = v(·, 0) and v1 = v(·, a), where a denotes the dimensionless

width of the plate. Denote this test space by Tw:

Tw = {[v v0 v1]T|v ∈ T1(Ω), v0 ∈ T (I), v1 ∈ T (I), v0 = v(·, 0), v1 = v(·, a)}.
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The fact that Q · n = −P on both Γ0 and Γ1 (interface condition (12)), results in some cancellations when adding (26) and
(27) (for both beams). Therefore,

hp

∫∫
Ω

∂2t wvdA+ η1

∫ 1

0
∂2t wb0v0dx+ η1

∫ 1

0
∂2t wb1v1dx+

∫∫
Ω

Q · ∇vdA +
∫ 1

0
V0v′0dx+

∫ 1

0
V1v′1dx = 0

for each [v v0 v1]T ∈ Tw .
The final form of this variational equation is obtained from the constitutive equations (18) for Q and (22) for V0 and V1:

hp

∫∫
Ω

∂2t wvdA + η1

∫ 1

0
∂2t wb0v0dx+ η1

∫ 1

0
∂2t wb1v1dx+ hp

∫∫
Ω

(∇w + ψ) · ∇vdA

+ η2

∫ 1

0
(∂xwb0 − φb0)v

′

0dx+ η2

∫ 1

0
(∂xwb1 − φb1)v

′

1dx = 0 (28)

for each [v v0 v1]T ∈ Tw .
A similar calculation is performed for the remaining equations of motion. Combining the second equation of motion (17)

for the plate with the Green formula (25) yields

Ip

∫∫
Ω

∂2t ψ · φdA +
∫∫

Ω

tr(MΦ)dA−
∫
∂Ω

Mn · φds+
∫∫

Ω

Q · φdA = 0 (29)

for each φ ∈ T2(Ω).
It follows from the second equation of motion (21) for the beam, using integration by parts, that

η1

αb

∫ 1

0
∂2t φbχdx+

∫ 1

0
Mbχ ′dx−

∫ 1

0
(V + L)χdx = 0 (30)

for each χ ∈ C1[0, 1]. (Mb is zero at the endpoints of the beam.)
The test functions χ0 and χ1 must satisfy the conditions χ0 = −φ1(·, 0) and χ1 = −φ1(·, a) in order to accommodate

the interface condition (11). Denote this test space by Tψ with

Tψ = {[φ χ0 χ1]T|φ ∈ T2(Ω), χ0 ∈ C1[0, 1], χ1 ∈ C1[0, 1], χ0 = −φ1(·, 0), χ1 = −φ1(·, a)}.

As before, when adding (29) and (30), (for both beams) some cancellation of terms occurs. Note that φ = (φ · n)n+ (φ · τ)τ
and consequently,∫

∂Ω

Mn · φds =
∫
∂Ω

(
(φ · n)Mn · n+ (φ · τ)Mn · τ

)
ds.

The natural boundary condition on Σ0 and Σ1 is Mn · n = 0. Also, for φ ∈ T2(Ω), φ2 = 0 on Σ̄0 and Σ̄1 and therefore
φ · τ = 0 on Σ̄0 and Σ̄1. On Γ0 and Γ1 the interface conditions (13) and (14) are used.
Consequently,

Ip

∫∫
Ω

∂2t ψ · φdA +
∫∫

Ω

tr(MΦ)dA+
∫∫

Ω

Q · φdA+
η1

αb

∫ 1

0
∂2t φb0χ0dx+

η1

αb

∫ 1

0
∂2t φb1χ1dx

+

∫ 1

0
Mb0χ ′0dx+

∫ 1

0
Mb1χ ′1dx−

∫ 1

0
V0χ0dx−

∫ 1

0
V1χ1dx = 0

for each [φ χ0 χ1]T ∈ Tψ .
The constitutive equations (18) and (19) for Q and M , and (22) and (23) for V1, V2, Mb0 and Mb1 are used to obtain the

final form of this variational equation.
We define a bilinear form bB by

bB(ψ,φ) =
∫∫

Ω

tr(MΦ)dA

=
1

βp(1− ν2)

∫∫
Ω

(
(∂1ψ1 + ν∂2ψ2)∂1φ1 + (∂2ψ2 + ν∂1ψ1)∂2φ2

)
dA

+
1

2βp(1+ ν)

∫∫
Ω

(∂1ψ2 + ∂2ψ1)(∂1φ2 + ∂2φ1)dA.

for each ψ, φ in C1(Ω̄)2.
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Finally, the second variational equation is given by

Ip

∫∫
Ω

∂2t ψ · φdA+ bB(ψ,φ)+ hp

∫∫
Ω

(∇w + ψ) · φdA+
η1

αb

∫ 1

0
∂2t φb0χ0dx+

η1

αb

∫ 1

0
∂2t φb1χ1dx

+
η2

βb

∫ 1

0
∂xφb0χ

′

0dx+
η2

βb

∫ 1

0
∂xφ
′

b1χ
′

1dx− η2

∫ 1

0
(∂xwb0 − φb0)χ0dx− η2

∫ 1

0
(∂xwb1 − φb1)χ1dx = 0 (31)

for each [φ χ0 χ1]T ∈ Tψ .

Variational form of Problem RMT

Find [w wb0 wb1]
T and [ψ φb0 φb1]T such that, for t > 0, it holds that [w(·, t) wb0(·, t) wb1(·, t)]T ∈ Tw and [ψ(·, t)

φb0(·, t) φb1(·, t)]T ∈ Tψ and that the system of variational equations (28) and (31) is satisfied for each [v v0 v1]T ∈ Tw and
for each [φ χ0 χ1]T ∈ Tψ .
Product space formulation
At this stage, it may seem reasonable to reduce the degrees of freedom of the system (28) and (31) by applying the

interface conditions (10) and (11) to obtain the variational form of ProblemRMT in terms ofw andψ (the plate displacement
and angles) only. However, certain regularity considerations for the weak solution should be kept in mind. To appreciate
the impact of regularity, it is necessary to consider the properties of the (exact) solution of the problem.
It is well known that to obtain the well-posedness of the associated weak variational problem, only forced interface

conditions should be imposed. For a weak solution, we have that the displacement and the angles belong to the Sobolev
spaces H1(Ω) and H1(Ω)2 and one may not assume that they belong to H2(Ω) and H2(Ω)2. Consequently, the traces of the
tangential derivatives ofw andψ1 on Γ0 and Γ1 are not well defined. The product space formulation in Tw × Tψ is a natural
setting for an investigation of the problem.
In finite element applications, the tangential derivative of w on Γ0 and Γ1 should not necessarily be set equal to the

derivatives of wb0 and wb1. This also applies to the tangential derivative of ψ1 and the derivatives of φb0 and φb1. Although
the equality of these derivatives are obvious for the smooth functions in Tw×Tψ , imposing these additional constraints may
result in incorrect approximations by the finite element method, as they influence the convergence to a limit. Of course, the
same considerations apply to the test functions. How this impacts on finite element calculations and results is discussed
further in Sections 5.2 and 6.2.
Variational form of Problem KEB
For this simplified model the variational form can be obtained by setting ψi = −∂iw, φbj = −∂xwbj for j = 0, 1 and

choosing φi = −∂iv, χj = −v′j for j = 0, 1 in (28) and (31). The rotary inertia terms containing Ip and η1/αb are ignored. In
this case the test functions are defined by

T (Ω) =
{
v ∈ C2(Ω̄) | v = 0 onΣ0 andΣ1

}
.

5. The eigenvalue problems

5.1. Problem RMTE

If the pair [w̃(x, t) w̃b0(x, t) w̃b1(x, t)]T = T (t)[w(x) wb0(x) wb1(x)]T and [ψ̃(x, t) φb0(x, t) φb1(x, t)]T =
T (t)[ψ(x) φb0(x) φb1(x)]T is considered as a possible solution for the system (28) and (31), the following eigenvalue problem
is obtained.
Find [w wb0 wb1]T ∈ Tw and [ψ φb0 φb1]T ∈ Tψ such that

λ

{
hp

∫∫
Ω

wvdA+ η1

∫ 1

0
wb0v0dx+ η1

∫ 1

0
wb1v1dx

}
= hp

∫∫
Ω

(∇w + ψ) · ∇vdA+ η2

∫ 1

0
(w′b0 − φb0)v

′

0dx+ η2

∫ 1

0
(w′b1 − φb1)v

′

1dx (32)

for each [v v0 v1]T ∈ Tw , and

λ

{
Ip

∫∫
Ω

ψ · φdA+
η1

αb

∫ 1

0
φb0χ0dx+

η1

αb

∫ 1

0
φb1χ1dx

}
= bB(ψ,φ)+ hp

∫∫
Ω

(∇w + ψ) · φdA

+
η2

βb

∫ 1

0
φ′b0χ

′

0dx+
η2

βb

∫ 1

0
φ′b1χ

′

1dx− η2

∫ 1

0
(w′b0 − φb0)χ0dx− η2

∫ 1

0
(w′b1 − φb1)χ1dx (33)

for each [φ χ0 χ1]T ∈ Tψ .
As before, an eigenvalue problem for Problem KEB can be obtained directly from this one by applying the required

simplifying assumptions.
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5.2. Galerkin approximation

We consider an approximate solution for the system (32) and (33) as

wh(x) =
N∑
i=1

wiγi(x), ψh1 (x) =
N∑
i=1

ψ1iγi(x) and ψh2 (x) =
N∑
i=1

ψ2iγi(x)

in terms of a set of basis functions γi, i = 1, 2, . . . , N and

whbj(x) =
r∑
i=1

w
j
iδi(x), φhbj(x) =

r∑
i=1

φ
j
iδi(x) with j = 0, 1

in terms of a set of basis functions δi, i = 1, 2, . . . , r .
Letw = [w1 w2 . . . wN ]T,wbj = [w

j
1 w

j
2 . . . w

j
r ]
T for j = 0, 1,

ψ1 = [ψ11 ψ12 . . . ψ1N ]
T, ψ2 = [ψ21 ψ22 . . . ψ2N ]

T and
φbj = [φ

j
1 φ

j
2 . . . φ

j
r ]
T for j = 0, 1.

The interface conditionswhb0 = w
h(·, 0),whb1 = w

h(·, a), φhb0 = −ψ
h
1 (·, 0) and φ

h
b1 = −ψ

h
1 (·, a) yield certain relationships

between the coefficients of the different components of the approximate solution. These conditions will be applied after the
matrix formulation of the discrete eigenvalue problem is obtained.
The discrete eigenvalue problem can be represented in matrix notation as

Kz = λMz

where z = [w wb0 wb1 ψ1 ψ2 φb0 φb1]T.K andM are the stiffness matrix and mass matrix respectively.
This discrete eigenvalue problem is obtained by substituting the approximate solutions into (32) and (33). Then the test

function [v v0 v1]T is chosen as [γj 0 0]T, [0 δj 0]T and [0 0 δj]T in (32). Finally the test function [φ1 φ2 χ0 χ1]T is chosen as
[γj 0 0 0]T, [0 γj 0 0]T, [0 0 δj 0]T and [0 0 0 δj]T in (33). (A basis for a finite dimensional subspace Sh of the product space
Tw × Tψ can be constructed from these functions.) Recall that [v v0 v1]T ∈ Tw and [φ χ0 χ1]T ∈ Tψ and that only admissible
basis functions may be used.
The following matrices are required for obtainingK andM.

KΩ11ij =

∫∫
Ω

∂1γj∂1γidA, KΩ22ij =

∫∫
Ω

∂2γj∂2γidA, KΩ12ij =

∫∫
Ω

∂1γj∂2γidA,

LΩ1ij =
∫∫

Ω

γj∂1γidA, LΩ2ij =
∫∫

Ω

γj∂2γidA, MΩ
ij =

∫∫
Ω

γjγidA

KΓij =
∫ 1

0
δ′jδ
′

idx, LΓij =
∫ 1

0
δjδ
′

idx, MΓ
ij =

∫ 1

0
δjδidx.

To deal with the bilinear form bB, we define the following matrices:

Kw = hp(KΩ11 + KΩ22),

K B1 =
1

βp(1− ν2)

(
KΩ11 +

1− ν
2
KΩ22

)
,

Kν =
1

βp(1− ν2)

(
ν
(
KΩ12

)T
+
1− ν
2
KΩ12

)
,

K B2 =
1

βp(1− ν2)

(1− ν
2
KΩ11 + KΩ22

)
.

Finally, let K1 = K B1 + hpMΩ and K2 = K B2 + hpMΩ . Then the matricesK andM for the discrete eigenvalue problem are
given by

K =



Kw 0 0 hpLΩ1 hpLΩ2 0 0
0 η2KΓ 0 0 0 −η2LΓ 0
0 0 η2KΓ 0 0 0 −η2LΓ

hp(LΩ1)T 0 0 K1 Kν 0 0
hp(LΩ2)T 0 0 K Tν K2 0 0
0 −η2(LΓ )T 0 0 0

η2

βb
KΓ + η2MΓ 0

0 0 −η2(LΓ )T 0 0 0
η2

βb
KΓ + η2MΓ


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Table 1
Eigenvalues for the plate–beam systems.

i KEB RMT Shear correction (%)

1 0.2413 0.2340 3.03
2 0.8765 0.7744 11.65
3 1.3715 1.1785 14.07
4 1.7197 1.6406 4.60
5 2.6642 2.4266 8.92
6 4.2835 3.9311 8.23

and

M =



hpMΩ 0 0 0 0 0 0
0 η1MΓ 0 0 0 0 0
0 0 η1MΓ 0 0 0 0
0 0 0 IpMΩ 0 0 0
0 0 0 0 IpMΩ 0 0
0 0 0 0 0

η1

αb
MΓ 0

0 0 0 0 0 0
η1

αb
MΓ


.

We use the Hermite piecewise bicubic functions γi, i = 1, 2, . . . , N and Hermite piecewise cubic functions δi, i =
1, 2, . . . , r . See e.g. [18] or [19] for detailed descriptions of these functions.
Interface conditions
It is important to note that the restrictions of each of the bicubic basis functions γj to Γ0 and Γ1 will either be zero or

will be equal to one of the Hermite piecewise cubics δi. The relationship between γj and δi is determined by the interface
conditions in the definitions of Tw and Tψ , i.e. v0 = v(·, 0), v1 = v(·, a), χ0 = −φ1(·, 0) and χ1 = −φ1(·, a). As far as the
derivatives are concerned, we will consider two options:
(a) v′0 6= ∂1v(·, 0), v

′

1 6= ∂1v(·, a), χ
′

0 6= −∂1φ1(·, 0) and χ
′

1 6= −∂1φ1(·, a),
and
(b) v′0 = ∂1v(·, 0), v

′

1 = ∂1v(·, a), χ
′

0 = −∂1φ1(·, 0) and χ
′

1 = −∂1φ1(·, a).

6. Numerical results

Parameters

For the numerical results, we consider a square plate (i.e. a = 1) and beams with a rectangular profile of thickness
d and height 5d. The dimensionless thickness db of the beams is denoted by db = d/`. We also assume that the plate
and the beams are made of the same isotropic material, i.e. G = E

2(1+ν) . For this special case the dimensionless constants
reduce to

η1 = 5d2b, η2 =
5κ2b d

2
b

κ2p
,

1
αb
=
25d2b
12

,
1
βp
=
(1+ ν)h3p
6κ2p

,
1
βb
=
25(1+ νb)d2b

6κ2b
.

We choose Poisson’s ratios ν = νb = 0.3 and the shear correction factors κ2 = κ2b = 5/6. The value of hp is fixed at
hp = 0.05 and db/hp = 1, unless specified differently.

Convergence

MATLAB programs are written for calculating approximate eigenvalues and eigenfunctions of the RMT and KEB
plate–beam systems. When the grid is refined, the eigenvalues form a decreasing sequence, which is in line with the theory.
The results in the following tables are accurate to at least three significant digits.

6.1. Comparing the RMT and KEB systems

For beam and plate models, it is well known that the shear corrections to the eigenvalues and eigenfunctions which are
introduced by the Timoshenko model and the Reissner–Mindlin model, are significantly larger than the corrections due to
rotary inertia (see e.g. [14,20,10,11]).
In [7] a KEB plate–beam system is investigated and it is shown that introducing rotary inertia into the model does not

cause a significant change in the eigenvalues. For a particular example, the correction to the tenth eigenvalue is only 0.1%.
In Table 1 the eigenvalues for the RMT system are compared to those of the KEB system for db/hp = 1. It should be noted
that the scaling for the dimensionless form for the KEB system differs from the scaling used in [7].
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Table 2
Derivatives of the first eigenfunction on Γ0 .

First eigenfunction of RMT system

x ∂1w
h (whb0)

′ ∂1ψ
h
1 (φhb0)

′

0 −5.0713 −4.7561 262.5596 −0.2038
0.05 −4.6689 −4.6945 59.2691 −2.0776
0.10 −4.4778 −4.5114 1.6054 −4.0744
0.15 −4.2476 −4.2216 −15.3787 −5.9983
0.20 −3.8883 −3.8313 −22.5621 −7.7766
0.25 −3.4109 −3.3481 −27.3887 −9.3617
0.30 −2.8394 −2.7830 −31.3024 −10.7147
0.35 −2.1942 −2.1495 −34.4493 −11.8029
0.40 −1.4939 −1.4631 −36.7642 −12.5997
0.45 −0.7563 −0.7407 −38.1800 −13.0857
0.50 −0.0000 −0.0000 −38.6563 −13.2490

plate

beam

plate

beam

(a) ∂1wh and (whb0)
′ . (b) ∂1ψh1 and (φ

h
b0)
′ .

Fig. 2. Derivatives of the first eigenfunction on Γ0 .

Clearly the shear corrections are significant (contrary to the corrections due to rotary inertia, see [7]). It is also interesting
to note that the shear corrections introduced by the RMT system do not increase monotonically for the sequence of
eigenvalues. This is an unexpected result as, for a Reissner–Mindlin plate or a Timoshenko beam on their own, the shear
corrections increase monotonically.

6.2. Forced interface conditions

In this section, we investigate how the regularity assumption on the tangential derivatives of w and ψ1 influences the
finite element calculations and results.
Firstly we consider the case where the tangential derivative of w on Γ0 and Γ1 is not set equal to the derivatives of wb0 and

wb1. The same assumption is made for the tangential derivative of ψ1 (and the derivatives of φb0 and φb1). Similar assumptions
hold for the test functions. In Table 2 we present details of the relevant derivatives on Γ0 for the first eigenfunction. Due to
the spatial symmetry of the model, values are listed for 0 ≤ x ≤ 0.5 and for only one of the beams. In Fig. 2 this information
is displayed graphically.
Clearly, for the transverse displacements w and wb0, ∂1wh ≈ (whb0)

′ on Γ0 (excluding the endpoints). However, for the
derivatives of the anglesψ1 andφb0, there are significant differences. It seems that singularities for ∂1ψh1 occur at the vertices
of the plate.
Next,we assume that the tangential derivatives of w andψ1 on Γ0 and Γ1 equal the derivatives of wbj and φbj (with similar

conditions holding for the test functions). In Table 3 we present details of the tangential derivatives on Γ0 for the first
eigenfunction.
Impact of regularity assumption
Note that the values of ∂1wh in Table 3 compare well with those obtained for the beam in Table 2, whereas the values of

∂1ψ
h
1 in Table 3 are approximately equal to the values obtained for the beam in Table 2.
Although not shown here, under the regularity assumption, the finite element approximations for the eigenvalues are

marginally larger, but not significantly so.
It is clearly desirable to have information concerning the regularity of solutions for plate–beam systems.
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Table 3
Derivatives of the first eigenfunction on Γ0 .

First eigenfunction (regularity assumed)

x ∂1w
h ∂1ψ

h
1

0 −4.7480 0.0006
0.05 −4.6895 −2.0817
0.10 −4.5156 −4.1123
0.15 −4.2305 −6.0416
0.20 −3.8412 −7.8221
0.25 −3.3573 −9.4100
0.30 −2.7908 −10.7662
0.35 −2.1555 −11.8573
0.40 −1.4672 −12.6564
0.45 −0.7428 −13.1439
0.50 0.0000 −13.3077

Table 4
Eigenvalues for RMT plate–beam system and the RM plate.

Eigenvalues of RMT plate–beam system Eigenvalues of supported RM plate
i db/hp = 1 db/hp = 2 db/hp = 4 db/hp = 8

1 0.2340 0.2702 0.2730 0.2733 0.2733
2 0.7744 1.5695 1.6552 1.6627 1.6643
3 1.1785 1.6619 1.6639 1.6642 1.6643

3.0030
3.0030

4 1.6406 3.2510 4.1503 4.1532 4.1540
5 2.4266 3.5914 5.8931 6.3471 6.3849
6 3.9311 4.1320 6.3844 6.3849 6.3849

6.3. Comparison of RMT system with a RM plate

In [7] it is also shown that the eigenvalues of a KEB plate–beam system tend to those of a rigidly supported Kirchhoff
plate if the thickness of the supporting beams is increased. In Table 4 the eigenvalues of the RMT plate–beam system are
compared to the eigenvalues of a Reissner–Mindlin plate that is rigidly supported on all four sides. The exact eigenvalues
for the rigidly supported plate is presented in the last column.
It is clear that, as expected, the eigenvalues of the RMTplate–beamsystem tend to the eigenvalues of the rigidly supported

Reissner–Mindlin plate as the ratio db/hp is increased.
An interesting phenomenon in this table warrants some comment. For large values of the ratio db/hp, an extra pair of

eigenvalues appears for the RMT system. For db/hp = 8 in Table 4, the double eigenvalue λ ≈ 3 does not correspond to an
eigenvalue of the supported plate. This was not the case for the KEB system, see [7].
To explain this phenomenon, we consider the vibration spectrum of a simply supported Timoshenko beam. It is easy to

see that λ = αb is an eigenvalue with the associated pair of eigenfunctionswb(x) = 0 and φb(x) = 1 (see [20]).
For db/hp = 8 and hp = 0.05, db = 0.4 and hence αb = 12/(25d2b) = 3. We conclude that the pair of extra eigenvalues

in Table 4 is a consequence of the pure rotation mode of the Timoshenko beam model.
It should be noted that, in this case, the length to height ratio for the beam is 1:2 and a two-dimensional beam model

is called for, rather than the Timoshenko model. However, it is remarkable that the Timoshenko model does capture this
two-dimensional effect in the elastic support.
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