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Abstract—Part 1 of this paper proposed a methodology for the efficientdetermination of gradient
information, when optimising a vehicle’s suspension characteristics for ride comfort and handling. The
non-linear full vehicle model, and simplified models for gradient information has been discussed, and
validated.

In this paper, the simplified models presented in Part 1 are used for gradient information simulations.
The convergence histories of the optimisation are comparedto those obtained when only the full,
computationally expensive, vehicle model is used. For illustration of the proposed gradient-based
optimisation methodology, up to four design variables are considered in modelling the suspension
characteristics.

The proposed methodology is found to be an efficient alternative for the optimisation of the vehicle’s
suspension characteristics. The undesirable effects associated with noise in the gradient information is
effectively reduced, using the simplified models. Substantial benefits are achieved in terms of computational
time needed to reach a solution.

Keywords— Dynamic-Q, gradient-based mathematical optimisation, ride comfort, handling,
vehicle suspension, semi-active.

1. INTRODUCTION

Part 1 of this paper presented a brief history of vehicle suspension optimisation,
the general problem of numerical noise, and computationally expensive simulation
models. It proposed the use of simplified mathematical models for calculating gradient
information, and the full simulation model for determiningthe objective function
value when optimising an off-road vehicle’s suspension characteristics. Although
this application uses the gradient-based optimisation algorithm Dynamic-Q [1], the
principle can be applied to any gradient-based optimisation algorithm.
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The optimisation of an off-road vehicle’s spring and dampercharacteristics for
ride comfort and handling, is presented as a case study. The vehicle is to be fitted
with a semi-active hydro-pneumatic suspension currently under development [2, 3],
which will be refered to as the 4 State Semi-Active Suspension System (4S4). Part 1
of this paper described the full vehicle model, developed inMSC.ADAMS [4], and
the validation of the model with measured test data. This full vehicle model is highly
accurate, but is computationally expensive, as a result of the detailed modelling of
non-linear effects, which also introduce numerical noise.

The simplified vehicle models for handling and ride comfort,as described in Part
1, are used to decrease the computational complexity of the full vehicle simulation
model, while still capturing the trends over the design space. For the determination
of the gradient information when optimising for handling, asimplified non-linear
four wheel model, that includes roll, is used. For the determination of the gradient
information when optimising for ride comfort, a simplified non-linear pitch-plane
model is used.

From Part 1 of this paper it is evident that the simplified models exhibit very
similar trends as the full vehicle simulation model, however, the absolute values differ,
necessitating the scaling of the simplified models to be morerepresentative of the full
vehicle model. The Dynamic-Q optimisation algorithm, to beused for the optimisation
of the vehicle’s handling and ride comfort, was introduced,and the design variables
and objective functions defined.

2. OPTIMISATION PROCEDURE

This paper compares the optimisation results when using thefull vehicle simulation
model for objective function value and gradient information (admsgrad), as
traditionally used in gradient-based optimisation, to theuse of the full vehicle
model only for the objective function value, and the simplified models for gradient
information (matgrad). Central finite differences, at a computational cost of2n + 1
function evaluations per iteration (wheren is the number of design variables), is
used for the determination of the gradient information. Theuse of central finite
differences for gradient information, was found to improveoptimisation convergence
in the presence of severe numerical noise by Els et. al. [5] and Thoresson [6].

The use of only the MSC.ADAMS full vehicle model in the optimisation
(admsgrad) has a computational cost of2n + 1 computationally expensive
simulations per iteration. The use of the MSC.ADAMS full vehicle model for
only the objective function value, and the simplified MATLABvehicle models for
gradient information (matgrad), has a computational cost of one computationally
expensive simulation per iteration, and2n computationally inexpensive simulations
per iteration. The simplified MATLAB models solve in approximately 10% of the full
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vehicle model’s simulation time. Sufficient gradient information is obtained, after the
simplified models have been scaled at a once-off cost of 30 computationally expensive
simulations for ride comfort and handling separately.

With the proposed methodology, more starting points or design variables
can be efficiently considered, in less computational time, making gradient-based
approximation methods for optimisation of vehicle suspension systems more feasible.
The simplified models also exhibit less numerical noise thanthe full simulation model,
resulting in smoother gradient information.

2.1. Definition of the Design Variables

For the two design variable problem the design variables areexplicitly defined as
follows: (from Part 1)

x1 = dpsf−0.1
3−0.1 , x2 = gvol−0.1

0.6−0.1
(1)

For the four design variable problem, the design variables are explicitly defined as
follows:

x1 = dpsff−0.1
3−0.1 , x2 = gvolf−0.1

0.6−0.1

x3 = dpsfr−0.1
3−0.1 , x4 = gvolr−0.1

0.6−0.1

(2)

Where dpsf refers to the damper scale factors andgvol refers to the static gas
volumes. The additionalf andr in equation (2) represent the front (f ) and rear (r)
values.

2.2. Definition of Objective Functions

For ride comfort the objective function, explained in Part 1, is defined as follows:

fride(x) =

∑
(azRMSd−0.7

4.4−0.7 ,
azRMSp−0.7

4.4−0.7 )

2
(3)

For handling the objective function is defined as follows:

fhand(x) =

∑
( (ϕ̇RMS−0.8)0.9

5.7−0.8 + 0.1,
(ϕ

1stpeak−1.4)0.9

12.2−1.4 + 0.1)

2
(4)
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3. HANDLING OPTIMISATION RESULTS

3.1. Two Design Variable Optimisation

The results for the comparison between theadmsgrad and thematgrad, when
optimising handling for two design variables, are illustrated in Figure 1. It can be
seen that the use of the simplified model for the gradient information (matgrad)
converged to an optimum after 12 iterations and 13 expensivefunction evaluations.
The use of the computationally expensive full vehicle model, for gradient information
(admsgrad), converged to the same optimum point within 15 iterations,but took
80 computationally expensive function evaluations of the full vehicle model. The
simplified model solves in approximately 10% of the solutiontime of the full
MSC.ADAMS vehicle model. Central finite differences is usedfor the gradient
determination, at a cost of2n + 1 function evaluations per iteration, wheren is the
number of design variables. When using only the MSC.ADAMS model for gradient
and objective function evaluation (admsgrad), one iteration of two design variables
costs the equivalent of 500% of the computational time of oneMSC.ADAMS model
simulation. When using the simplified models for gradient information, and only
one full MSC.ADAMS simulation for the objective function value, the cost of one
iteration is equivalent to100% + 2 · 2 · 10%, which is the equivalent of140% of
the computational time of one MSC.ADAMS simulation. The useof the simplified
models for the determination of gradient information, is therefore approximately 3.5
times faster than using only the MSC.ADAMS model, when considering two design
variables. This highlights the advantages in terms of simulation time achievable for
just two design variables. It is also observed that the use ofthe simplified model for
gradient information does not introduce instabilities in the optimisation convergence
history. The simplified model produces sufficiently accurate gradient information to
drive the optimisation to the same optimum.

3.2. Four Design Variable Optimisation

With the successful results obtained for two design variable handling optimisation,
the problem was expanded to four design variables, thus allowing the front and rear
suspension characteristics to be independent of each other. It is believed that the
four design variable problem will exhibit more local minima, and the use of the
simple model for gradient information needs to be tested forrobustness. The results
of the four design variable optimisation, where the full MSC.ADAMS model was
used for gradient information is presented in Figure 2. Fromthe figure it can be
seen that the optimisation converged to a minimum identicalto that for two design
variables, considering the noise levels present in the numerical model. It is noted from
the optimisation convergence history, that there are repeated equal local minima at
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iterations five,eight, and ten. Also to be noted is that if theoptimisation had continued
for a few more iterations, design variablex2, would most probably have moved to
the same value asx4 as expected from Figure 1. It can be seen that the design
variablex1 (front damper) takes on a value around 0.9, andx3 (rear damper design
variable) takes on a value of 1, but they also have not converged on a final value.
It is also evident that design variablex4 (rear gas volume design variable) moved
to the boundary, and should be at the lowest value. However, interestingly the front
gas volume, design variablex2 takes on a value around 0.27, but can also take on
a value around 0.07. Considering the optimisation convergence history, when the
simplified model is used for the gradient evaluations (Figure 3), it can be seen that the
optimisation process converges to a minimum identical to that for two design variables
and four design variables using the MSC.ADAMS model for gradient information.
The design variable values converge to different values. Indicating the presence of
multiple equivalent local minima. Yet the design variablesx1 andx3 are very close
to the average of the last few iterations of Figure 2, the results when using only the
MSC.ADAMS model for gradient and function values. Design variable x2 went to
the lower bound as would be expected from the two design variable results. However,
when considering the results in Figure 2, it can be seen that design variablex2 takes
on a value of around 0.27, but it appears not to have settled. From the results it is
clear that no difficulties are experienced in obtaining a feasible optimum and that both
the solutions are equally feasible. The four design variable optimisation for seven
optimisation iterations, using the simplified model, is approximately five times faster
than using only the full MSC.ADAMS vehicle model.

4. RIDE COMFORT OPTIMISATION RESULTS

4.1. Tyre Hop in the Optimisation Process

The ride comfort optimisation has to be performed considering tyre hop effects, as
the vehicle can become unstable on the road should the tyres constantly loose contact
with the road. The tyre hop constraints tend to exhibit a moreprominent role, than the
objective function, on the damping design variable’s lowerlimit. An investigation was
performed, to determine the most effective method of including the tyre hop effect
within the optimisation process. The following conditionswere considered:

r Constrained optimisation: (constrained) The objective function is defined as in
equation (3). The tyre hop constraints are defined as: the individual tyre’s vertical
forceFztyrei

may not be equal to zero for more than 10% of the total timettotal,
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when travelling on rough off-road terrain, and scaled as follows:

gi(x) = 10(

∑
t(Fztyrei

=0)

ttotal
− 0.1) ≤ 0, i = 1, ..., 4 (5)

Results are indicated in Figure 4.
r Unconstrained optimisation: The objective function is defined as in equation (3).

The constraints, as defined in equation (5), are only monitored, but not considered
by the optimisation algorithm, (unconstrained). The results are indicated in Figure
5.

The equivalent objective functionf(x)eq values presented in Figures 4 and 5 is
the ride comfort objective function defined by equation (3).The equivalent inequality
constraint valueg(x)eq is defined as:

g(x)eq = maxi=1,..4(gi(x)) (6)

representing the maximum of the tyre hop constraint function of the four wheels. From
the results it can be seen that the constrained optimisation(constrained, Figure 4),
returns the lowest objective function value for the tyre hopinequality constraint being
satisfied. In general the front tyres contributed most to thetyre hop, compared to the
rear tyres, however, the rear tyres also contributed in the optimisation convergence
history, making the inclusion of all tyres as constraints necessary. It was found that a
tyre hop limit of 10% for the particular road in question is a reasonable constraint, as
smaller limits tend to overconstrain the optimisation. It is thus decided that the tyre hop
limit of 10% will be included as a constraint for all future ride comfort optimisation,
when travelling over rough off-road terrain.

4.2. Two Design Variable Optimisation

The vehicle suspension settings were optimised for ride comfort, for two design
variables, with the tyre hop constraint included, as definedin equation (5). The
results of the optimisation process, for using only the MSC.ADAMS model for
gradient information, compared to using the simplified pitch-plane model for gradient
information are presented in Figure 6. It can be seen that thesimplified gradients
(matgrad) took approximately 24 iterations (25 expensive function evaluations)
corresponding to an effective cost of 35 expensive functionevaluations in terms
of time, to reach an optimum. However, identical local minima, in terms of the
objective function value, were repeatedly reached at iterations 10, 13, 17 and 20. The
expensive gradients (admsgrad) effectively reached the optimum after 8 iterations
at a cost of 45 expensive function evaluations, with an identical objective function
value minimum repeated at iteration 19. Although the use of the simplified model for
gradient information took more iterations, the total computing time is significantly
less than using only the expensive numerical model for function values and gradient
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information. It is also apparent from the convergence histories that the use of the
simplified model for gradient information, results in a muchsmoother convergence
history, giving greater confidence in the computed results.

4.3. Two Design Variable Optimisation, MATLAB Model Only

With such reasonable results obtained using the simple model for the computation of
gradient information, it is necessary to justify the use of the complete MSC.ADAMS
vehicle model for the function value in the optimisation process. The same
optimisation was done as above but using only the simple Matlab model for the
optimisation procedure. From the results in Figure 7 it can be seen that the function
values are not the same as the MSC.ADAMS simulation values (calculated at iteration
5 and 25) and that the optimisation algorithm will converge to an infeasible point,
when considering the constraints. Thus the use of the full MSC.ADAMS vehicle
model is necessary in order to ensure the optimisation algorithm terminates at a
feasible minimum. Although the simplified model has very similar trends, the absolute
values are not always the same, especially when consideringthe tyre hop constraints.
This explains why the converged solution may not be feasible, when only using the
simplified Matlab model for the optimisation procedure. Theuse of the complete
MSC.ADAMS model for function values and the simplified Matlab model for gradient
information is thus the most viable solution.

4.4. Four Design Variable Optimisation

The four design variable ride comfort optimisation, was started from the optimum
achieved from the two design variable optimisation. The optimisation process worked
equally well as in the previously considered cases, although only small improvements
are visible from the starting point, as can be seen from the MSC.ADAMS gradient
history in Figure 8, and the Matlab gradient history in Figure 9. It is observed that
although both methods converge to equally feasible solutions, the front and rear spring
characteristics should differ in absolute value as can be seen by design variablesx2
andx4. The result of this is that if the front gas volume is larger the front seated
passengers will experience better ride comfort than the rear passengers, and the
opposite if the rear spring gas volume is larger.

From the above studies it is concluded that the optimisationprocess, making use
of the simplified Matlab models for gradient information, produces equally feasible
results in substantially less computational time. It will now be assumed that these
models are sufficiently representative of the system for gradient information.
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5. COMBINED RIDE COMFORT AND HANDLING OPTIMISATION

With the use of simplified models for gradient information validated, the models are
combined to represent the vehicle performing a handling manœuvre on a rough terrain.
For the combined ride comfort and handling optimisation, the vehicle performs the
double lane change over the Belgian paving. The full simulation model will be used
as before once per iteration for the exact objective function values and constraint
values. The Matlab models will remain the same. However, theride model will be
used to observe the ride dynamics gradient tendencies, and the handling model for
the handling dynamics gradient tendencies. A study was conducted as to how best
to consider the optimisation of the compromise passive suspension. This is done to
determine the methodology needed when including the control strategy of the4S4

system for optimisation.

5.1. Handling Followed by Ride Comfort Optimisation

First the vehicle will be optimised for handling, subject tothe tyre hop inequality
constraints, and then optimised for ride comfort starting from the point where the
handling optimisation converged. The ride comfort is optimised subject to the tyre
hop inequality constraints, and an additional inequality constraint that the optimised
handlingf ∗

hand may not decrease by more than 20% (compared to the optimised
handling result) as stated below:

g(x)hand = 10(fhand(x) − 1.2f
∗
hand

) ≤ 0 (7)

The 20% parameter was selected as it was found that for optimisation runs where the
handling constraint was 5 or 10 %, the handling constraint could not be satisfied, if
improvements in ride comfort were achieved. The value of 20%was thus found to be
a reasonable constraint value. The multiplication by 10 wasused to better normalise
the constraint values between -1 and 1.

The optimisation convergence history for two design variables is presented in
Figure 10. The equivalent tyre hop constraint is plotted as defined in equation (6).
The top graph refers to the handling optimisation where the objective function is
defined as in equation (4), and the bottom graph is for the ridecomfort optimisation,
where the objective function is defined as in equation (3). Itcan be seen that the
optimisation convergence history is well behaved for the handling optimisation, and
results in an objective function value of approximately 0.21, which is equivalent to
a body roll angle of 3o, and a RMS body roll velocity of 1.3o/s. The ride comfort
optimisation, subjected to the handling constraint, has a poorly behaved convergence
history, and does not converge to a clear optimum. If iteration 18 is considered as
the best minimum, the driver RMS vertical acceleration is approximately 2.2m/s2,
which is considered as extremely uncomfortable [7], and needs to be improved.
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5.2. Maximum of Ride Comfort and Handling

The results of handling followed by ride comfort optimisation, prompted the
investigation into using the maximum value of the four normalised objective function
parameters (roll angle, RMS roll velocity, driver comfort,passenger comfort) as the
objective function value. The objective function is thus defined as follows:

f(x) = max(f(x)hand, f(x)ride) (8)

The disadvantage of the nature of this objective function isthe now inherent
discontinuities due to the maximum function. However, veryreasonable results were
achieved as illustrated by Figure 11. In the figure,f(x)hand is the handling objective
function value as defined by equation (4),f(x)ride is the ride comfort objective
function as defined by equation (3), and the equivalent tyre hop constraintg(x)eq
defined by equation (6). Additionally it is observed that theoverall optimum is the
best of the two objectives. When considering the final designconfiguration iterations
3, 6 and 9, are repeated identical minima, and should be considered for the acceptable
band of the design variables, to return objective function values of approximately 0.32.
This results in vertical RMS accelerations of approximately 1.8m/s2, body roll angle
of 4o, and a RMS roll velocity of 1.9o/s. The optimisation convergence took fewer
iterations than the optimisation of handling followed by ride comfort, even though the
objective function is of a discontinuous nature, due to the maximum function.

The use of the maximum function for the objective function was expanded to
four design variables, and started in the same place as for two design variables, the
middle of the design space. The results, presented in Figure12, illustrate the excellent
convergence to the optimum, of identical magnitude as for two design variables, but
the design variable values differ. Although it is evident that multiple local minima
exist, the optimisation converges to identical objective function value minima.

6. SUMMARY OF RESULTS

Presented in Table 1 are the results for the optimisation runs. From the results it
can be seen that the combined optimisation is a compromise between handling and
ride comfort, especially when considering the use of the maximum function for the
objective function. If reasonable handling is to be achieved, then the ride comfort
suffers, while if good ride comfort is to be achieved then thehandling suffers. This
is the traditional compromise, that the4S4 suspension avoids due to the ability to
switch between the optimum handling and ride comfort settings. The resulting optimal
damping multiplication factors and spring gas volumes are presented in Table 2. From
the table it is clear that the ride comfort design parameterslie on the opposite corner of
the design space to the handling design parameters. Also noticeable when observing
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the parameters of the combined optimisation, is that the gasvolume lies in the middle
of the design space at 0.3l, but that the damping should be 50% of the current baseline
characteristic. This however, severely affects the handling stability of the vehicle as
can be observed by the higher RMS roll velocity value.

7. CONCLUSIONS

This paper has shown that the use of simplified mathematical models, of the
computationally intensive full simulation model, for use in computing gradient
information, can significantly improve the optimisation process. Firstly the
optimisation process is significantly faster in terms of total optimisation time.
Secondly the simplified models help to reduced numerical noise in the evaluation
of the gradients, resulting in smoother convergence histories. Thirdly the simplified
models are sufficiently representative of the vehicle system, when used for gradient
information, although their absolute values may differ, and need to be properly scaled
before use.

For the handling optimisation, it was found that the two methods gave identical
optimum solutions, and that the optimal solutions lie alongthe maximum boundary of
the damper design variable, and the lower boundary of the spring design variable.

For the ride comfort optimisation, the inclusion of the vehicle’s tyre hop was
investigated. It was found that the best results were achieved when including the tyre
hop as an inequality constraint in the optimisation process. It was also found that the
tyre hop tends to constrain the damping parameter from running towards it’s lower
boundary constraint.

Both ride comfort and handling were optimised simultaneously, and it was found
that the maximum of the normalised ride comfort and handlingobjectives is a feasible
objective function, for determining the compromise optimum. Both two and four
design variable optimisation were successfully performed. Of particular interest is
the fact that the spring design variable, lay close to the middle of the design space,
while the damper design variable was decreased to 50% of the current baseline damper
value. Work is still needed in the accurate description of the objective and constraint
functions for the combined ride comfort and handling optimisation.

The methodology proposed is thus an efficient means of optimising a vehicle’s
suspension system for ride comfort and handling. This makesthe use of deterministic
gradient based optimisation algorithms most suitable, andcompetitive for suspension
optimisation.
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FIGURES 12

Handling Optimisation, Double Lane Change 55 km/h, 2 Variables
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Fig. 1. Handling optimisation convergence histories for full MSC.ADAMS model, and using the simplified
MATLAB model for gradient information, 2 design variables
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Handling Optimisation, Double Lane Change 55 km/h, 4 Variables, Adams Gradients
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Fig. 2. Handling optimisation convergence history using the full MSC.ADAMS model for gradient
information, 4 design variables
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Handling Optimisation, Double Lane Change 55 km/h, 4 Variables, Matlab Gradients
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Fig. 3. Handling optimisation convergence histories usingthe simplified MATLAB model for gradient
information, 4 design variables
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Ride Comfort Optimisation, Implementation of Tyre Hop
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Fig. 4. Implementing tyre hop as a constraint in ride comfortoptimisation
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Ride Comfort Optimisation, Implementation of Tyre Hop
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Fig. 5. Observing tyre hop value while performing ride comfort optimisation
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Ride Optimisation, 40 km/h Belgian Paving, 2 Variables, MSC.ADAMS Gradient
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Ride Optimisation, 40 km/h Belgian Paving, 2 Variables, MATLAB Gradient
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Fig. 6. Comparison of the optimisation histories for the MSC.ADAMS gradient and simple MATLAB
model gradient methods for 2 design variable ride comfort optimisation
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Ride Optimisation, 40 km/h Belgian Paving, 2 variables, MATLAB Only
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Fig. 7. Ride comfort optimisation convergence history for using only the simple Matlab based model, for
objective function value, gradients, and tyre hop information.
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Ride Comfort Optimisation, Belgian Paving 40 km/h, 4 Variables, ADAMS Gradients
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Fig. 8. Ride Comfort optimisation convergence history for 4design variables using the full MSC.ADAMS
model for gradient information, starting at the optimum from two design variables
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Ride Comfort Optimisation, 40 km/h, 4 Variables, MATLAB Gradients
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Fig. 9. Ride Comfort optimisation convergence history for 4design variables using the Matlab model for
gradient information, starting at the optimum from two design variables. Design variable x1 follows
x3 very closely
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Combined Optimisation, 45 km/h, Handling Optimisation, 2 Variables
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Fig. 10. Combined convergence history, first handling optimisation, then ride comfort.
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Combined Optimisation, Double Lane Change on Belgian Paving, 45 km/h, 2 Variables
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Fig. 11. Combined optimisation convergence history, maximum of handling and ride comfort objectives, 2
design variables.



23 FIGURES

Combined Optimisation, Double Lane Change on Belgian Paving, 45 km/h, 4 Variables
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Fig. 12. Combined optimisation convergence history, maximum of handling and ride comfort objectives, 4
design variables.
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Table 1. Summary of Results for Optimisation Objectives

variables, Fig. # iter. f∗(x) ϕ̇RMS ϕpeak aRMSd
aRMSp

opt. run (eq evals) ±0.01 [o/s] [o] [m/s2] [m/s2]
Handling
2, matgrad 1 12 (18.2) 0.15 0.57 3.0 - -

2, admsgrad 1 15 (80) 0.15 0.57 3.0 - -
4, admsgrad 2 6 (63) 0.15 0.54 3.2 - -
4, matgrad 3 7 (14.4) 0.15 0.55 3.1 - -

Ride
2, matgrad 6 24 (35) 0.13 - - 1.20 1.18

2, admsgrad 6 19 (100) 0.12 - - 1.16 1.14
4, matgrad 9 9 (18) 0.11 - - 1.14 1.08

4, admsgrad 8 7 (72) 0.11 - - 1.10 1.10
Combined

2, handling1st 10 6 (9.8) 0.21 1.29 2.9 - -
2, ride after 10 18 (34.2) 0.40 1.52 3.0 2.20 2.18
2, fmax(x) 11 6 (12.6) 0.32 1.86 4.0 1.78 1.78
4, fmax(x) 12 7 (20.8) 0.32 1.83 4.0 1.76 1.62
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Table 2. Summary of optimum damper factors and gas volumes

opt. run Fig. dpsff gvolf dpsfr gvolr

Handling
2, matgrad 1 3.00 0.10 3.00 0.10

2, admsgrad 1 3.00 0.10 3.00 0.10
4, admsgrad 2 2.72 0.24 3.00 0.10
4, matgrad 3 2.89 0.10 2.69 0.10

Ride
2, matgrad 6 0.30 0.51 0.30 0.51

2, admsgrad 6 0.29 0.54 0.29 0.54
4, matgrad 9 0.29 0.56 0.25 0.47

4, admsgrad 8 0.24 0.43 0.27 0.53
Combined

2, handling1st 10 1.35 0.10 1.35 0.10
2, ride after 10 0.55 0.17 0.55 0.17
2, fmax(x) 11 0.51 0.30 0.51 0.30
4, fmax(x) 12 0.53 0.26 0.40 0.28


