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Abstract—Part 1 of this paper proposed a methodology for the efficdgtermination of gradient
information, when optimising a vehicle’s suspension cbi@rstics for ride comfort and handling. The
non-linear full vehicle model, and simplified models for gjemt information has been discussed, and
validated.

In this paper, the simplified models presented in Part 1 aed @ gradient information simulations.
The convergence histories of the optimisation are compamethose obtained when only the full,
computationally expensive, vehicle model is used. Forstiltion of the proposed gradient-based
optimisation methodology, up to four design variables apesaered in modelling the suspension
characteristics.

The proposed methodology is found to be an efficient altemdior the optimisation of the vehicle’s
suspension characteristics. The undesirable effectciassth with noise in the gradient information is
effectively reduced, using the simplified models. Subsahhenefits are achieved in terms of computational
time needed to reach a solution.

Keywords— Dynamic-Q, gradient-based mathematical optimisatiate domfort, handling,
vehicle suspension, semi-active.

1. INTRODUCTION

Part 1 of this paper presented a brief history of vehicle sosjpn optimisation,
the general problem of numerical noise, and computatipreadpensive simulation
models. It proposed the use of simplified mathematical nedfdelcalculating gradient
information, and the full simulation model for determinititge objective function
value when optimising an off-road vehicle’s suspensionratiaristics. Although
this application uses the gradient-based optimisationrdlgn Dynamic-Q [1], the
principle can be applied to any gradient-based optimisalgorithm.

LAddress correspondance to: Schalk Els, Tel.: +27 12 420 ;264%: +27 12 362 5087; E-mail:

schalk.els@up.ac.za; web page: www.me.up.ac.za
*Department of Mechanical and Aeronautical Engineeringivérsity of Pretoria, Pretoria 0002, South

Africa.



2

The optimisation of an off-road vehicle’s spring and damglearacteristics for
ride comfort and handling, is presented as a case study. &hielg is to be fitted
with a semi-active hydro-pneumatic suspension currentlyen development [2, 3],
which will be refered to as the 4 State Semi-Active SuspenSigstem 45,). Part 1
of this paper described the full vehicle model, developeMBC.ADAMS [4], and
the validation of the model with measured test data. Thisvkhicle model is highly
accurate, but is computationally expensive, as a resulbefdetailed modelling of
non-linear effects, which also introduce numerical noise.

The simplified vehicle models for handling and ride comfag,described in Part
1, are used to decrease the computational complexity ofuthedhicle simulation
model, while still capturing the trends over the design sp&or the determination
of the gradient information when optimising for handlingsiaplified non-linear
four wheel model, that includes roll, is used. For the deteation of the gradient
information when optimising for ride comfort, a simplifiedmlinear pitch-plane
model is used.

From Part 1 of this paper it is evident that the simplified medshibit very
similar trends as the full vehicle simulation model, howetlee absolute values differ,
necessitating the scaling of the simplified models to be mepeesentative of the full
vehicle model. The Dynamic-Q optimisation algorithm, taised for the optimisation
of the vehicle’s handling and ride comfort, was introducaual] the design variables
and objective functions defined.

2. OPTIMISATION PROCEDURE

This paper compares the optimisation results when usinfutheehicle simulation
model for objective function value and gradient informati@@dmsgrad), as
traditionally used in gradient-based optimisation, to tiee of the full vehicle
model only for the objective function value, and the simptifimodels for gradient
information (natgrad). Central finite differences, at a computational cosoft 1
function evaluations per iteration (whereis the number of design variables), is
used for the determination of the gradient information. Tise of central finite
differences for gradient information, was found to impraytimisation convergence
in the presence of severe numerical noise by Els et. al. [b]ldnoresson [6].

The use of only the MSC.ADAMS full vehicle model in the optgation
(admsgrad) has a computational cost ofn + 1 computationally expensive
simulations per iteration. The use of the MSC.ADAMS full idd model for
only the objective function value, and the simplified MATLARhicle models for
gradient informationatgrad), has a computational cost of one computationally
expensive simulation per iteration, abd computationally inexpensive simulations
per iteration. The simplified MATLAB models solve in apprmately 10% of the full
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vehicle model’'s simulation time. Sufficient gradient infaation is obtained, after the
simplified models have been scaled at a once-off cost of 3@atationally expensive
simulations for ride comfort and handling separately.

With the proposed methodology, more starting points or gfesvariables
can be efficiently considered, in less computational timeking gradient-based
approximation methods for optimisation of vehicle susjp@mmsystems more feasible.
The simplified models also exhibit less numerical noise tharfull simulation model,
resulting in smoother gradient information.

2.1. Definition of the Design Variables

For the two design variable problem the design variableseapdicitly defined as
follows: (from Part 1)

dpsf—0.1
3-0.1 >

Ty = gvol—0.1 (1)

Ty = 0.6-0.1

For the four design variable problem, the design variabteseaplicitly defined as
follows:

_ dpsff—0.1 _ gvolf—0.1

T1= 73701 > T2~ "g6-01
dpsfr—0.1 lr—0.1 @

__ dpsfr—0. __ gvolr—0.

T3="3701 » T4~ Tg6-01

Where dpsf refers to the damper scale factors apebl refers to the static gas
volumes. The additiongf andr in equation (2) represent the front)(and rear )
values.

2.2. Definition of Objective Functions

For ride comfort the objective function, explained in Parisldefined as follows:

Z( a:rMs54—0.7 Oz R]VISP70»7)

fride(x) _ 4.4-0.7 2’ 4.4-0.7 (3)

For handling the objective function is defined as follows:

; —0.8)0. (@15t peqr—1-4)0.9
S (L + 0.1, P R 4 0.)
fhand(x) — 5.7-0.8 5 12.2-1.4 (4)




3. HANDLING OPTIMISATION RESULTS

3.1. Two Design Variable Optimisation

The results for the comparison between thénsgrad and thematgrad, when
optimising handling for two design variables, are illugtdhin Figure 1. It can be
seen that the use of the simplified model for the gradientrin&tion (natgrad)
converged to an optimum after 12 iterations and 13 expetfgivetion evaluations.
The use of the computationally expensive full vehicle mofielgradient information
(admsgrad), converged to the same optimum point within 15 iteratidng, took
80 computationally expensive function evaluations of thé ¥ehicle model. The
simplified model solves in approximately 10% of the solutiime of the full
MSC.ADAMS vehicle model. Central finite differences is usked the gradient
determination, at a cost @ + 1 function evaluations per iteration, whenes the
number of design variables. When using only the MSC.ADAMSleaidor gradient
and objective function evaluationdmsgrad), one iteration of two design variables
costs the equivalent of 500% of the computational time of MIS€C. ADAMS model
simulation. When using the simplified models for gradierfbimation, and only
one full MSC.ADAMS simulation for the objective function lue, the cost of one
iteration is equivalent td00% + 2 - 2 - 10%, which is the equivalent 0140% of
the computational time of one MSC.ADAMS simulation. The afehe simplified
models for the determination of gradient information, isrtfore approximately 3.5
times faster than using only the MSC.ADAMS model, when coeisng two design
variables. This highlights the advantages in terms of st time achievable for
just two design variables. It is also observed that the ugheogimplified model for
gradient information does not introduce instabilitieshe bptimisation convergence
history. The simplified model produces sufficiently accergtadient information to
drive the optimisation to the same optimum.

3.2. Four Design Variable Optimisation

With the successful results obtained for two design vagidt@indling optimisation,
the problem was expanded to four design variables, thusialgpthe front and rear
suspension characteristics to be independent of each. dthisrbelieved that the
four design variable problem will exhibit more local minimand the use of the
simple model for gradient information needs to be testeddbustness. The results
of the four design variable optimisation, where the full MBDAMS model was
used for gradient information is presented in Figure 2. Ftbom figure it can be
seen that the optimisation converged to a minimum identwahat for two design
variables, considering the noise levels present in the neaienodel. It is noted from
the optimisation convergence history, that there are tegeaqual local minima at
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iterations five,eight, and ten. Also to be noted is that ifap&misation had continued
for a few more iterations, design variahie, would most probably have moved to
the same value as4 as expected from Figure 1. It can be seen that the design
variablex1 (front damper) takes on a value around 0.9, afdrear damper design
variable) takes on a value of 1, but they also have not coedeoy a final value.

It is also evident that design variahlel (rear gas volume design variable) moved
to the boundary, and should be at the lowest value. Howeawerdstingly the front
gas volume, design variable2 takes on a value around 0.27, but can also take on
a value around 0.07. Considering the optimisation convergéistory, when the
simplified model is used for the gradient evaluations (Fég);, it can be seen that the
optimisation process converges to a minimum identicalaofibr two design variables
and four design variables using the MSC.ADAMS model for ggatlinformation.
The design variable values converge to different valuediciting the presence of
multiple equivalent local minima. Yet the design variahidsandx3 are very close
to the average of the last few iterations of Figure 2, theltesuhen using only the
MSC.ADAMS model for gradient and function values. Desigmiafale 22 went to
the lower bound as would be expected from the two designhiari@sults. However,
when considering the results in Figure 2, it can be seen #&gd variabler2 takes
on a value of around 0.27, but it appears not to have settlexh Ehe results it is
clear that no difficulties are experienced in obtaining aitda optimum and that both
the solutions are equally feasible. The four design vagiagtimisation for seven
optimisation iterations, using the simplified model, is mpgmately five times faster
than using only the full MSC.ADAMS vehicle model.

4. RIDE COMFORT OPTIMISATION RESULTS

4.1. Tyre Hop in the Optimisation Process

The ride comfort optimisation has to be performed considgtyre hop effects, as
the vehicle can become unstable on the road should the tynssantly loose contact
with the road. The tyre hop constraints tend to exhibit a npooeninent role, than the
objective function, on the damping design variable’s lolirait. An investigation was

performed, to determine the most effective method of inicigdhe tyre hop effect
within the optimisation process. The following conditiomsre considered:

e Constrained optimisationcgnstrained) The objective function is defined as in
equation (3). The tyre hop constraints are defined as: theidugl tyre’s vertical
force F.;,,., may not be equal to zero for more than 10% of the total g,



when travelling on rough off-road terrain, and scaled ae¥d:
gi(x)zlo(W—o.l) <0, i=1,..4 (5)
Results are indicated in Figure 4.
e Unconstrained optimisation: The objective function is dedi as in equation (3).
The constraints, as defined in equation (5), are only madtdvut not considered

by the optimisation algorithmyfconstrained). The results are indicated in Figure
5.

The equivalent objective functiofi(x)., values presented in Figures 4 and 5 is
the ride comfort objective function defined by equation {3)e equivalent inequality
constraint valug(z)., is defined as:

9(x)eq = maz;=1,. 4(gi(x)) (6)

representing the maximum of the tyre hop constraint fumatiche four wheels. From
the results it can be seen that the constrained optimis&tmstrained, Figure 4),
returns the lowest objective function value for the tyre regguality constraint being
satisfied. In general the front tyres contributed most tatyhe hop, compared to the
rear tyres, however, the rear tyres also contributed in fitanisation convergence
history, making the inclusion of all tyres as constraintsgssary. It was found that a
tyre hop limit of 10% for the particular road in question issasonable constraint, as
smaller limits tend to overconstrain the optimisations ttius decided that the tyre hop
limit of 10% will be included as a constraint for all futurele comfort optimisation,
when travelling over rough off-road terrain.

4.2. Two Design Variable Optimisation

The vehicle suspension settings were optimised for ridefedmfor two design
variables, with the tyre hop constraint included, as defime@quation (5). The
results of the optimisation process, for using only the METAMS model for
gradient information, compared to using the simplifiedlpitdane model for gradient
information are presented in Figure 6. It can be seen thasithelified gradients
(matgrad) took approximately 24 iterations (25 expensive functioaleations)
corresponding to an effective cost of 35 expensive functwaluations in terms
of time, to reach an optimum. However, identical local miajnin terms of the
objective function value, were repeatedly reached attitera 10, 13, 17 and 20. The
expensive gradientsadmsgrad) effectively reached the optimum after 8 iterations
at a cost of 45 expensive function evaluations, with an idahbbjective function
value minimum repeated at iteration 19. Although the uséefimplified model for
gradient information took more iterations, the total cotirpmy time is significantly
less than using only the expensive numerical model for fanatalues and gradient
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information. It is also apparent from the convergence hissothat the use of the
simplified model for gradient information, results in a mwrhoother convergence
history, giving greater confidence in the computed results.

4.3. Two Design Variable Optimisation, MATLAB Model Only

With such reasonable results obtained using the simple hidéne computation of
gradient information, it is necessary to justify the usehaf tomplete MSC.ADAMS
vehicle model for the function value in the optimisation @ss. The same
optimisation was done as above but using only the simple adathodel for the
optimisation procedure. From the results in Figure 7 it carséen that the function
values are not the same as the MSC.ADAMS simulation valusdsi(iated at iteration
5 and 25) and that the optimisation algorithm will convergeah infeasible point,
when considering the constraints. Thus the use of the fulCM®AMS vehicle
model is necessary in order to ensure the optimisation ighgorterminates at a
feasible minimum. Although the simplified model has veryikmrends, the absolute
values are not always the same, especially when considigényre hop constraints.
This explains why the converged solution may not be feasibleen only using the
simplified Matlab model for the optimisation procedure. Tuse of the complete
MSC.ADAMS model for function values and the simplified Ma&tlaodel for gradient
information is thus the most viable solution.

4.4. Four Design Variable Optimisation

The four design variable ride comfort optimisation, wagtsth from the optimum
achieved from the two design variable optimisation. Theénsigation process worked
equally well as in the previously considered cases, althamndy small improvements
are visible from the starting point, as can be seen from th€ MBAMS gradient
history in Figure 8, and the Matlab gradient history in Fig@. It is observed that
although both methods converge to equally feasible salstithe front and rear spring
characteristics should differ in absolute value as can ba bg design variables2
and z4. The result of this is that if the front gas volume is large front seated
passengers will experience better ride comfort than the peasengers, and the
opposite if the rear spring gas volume is larger.

From the above studies it is concluded that the optimisgirmcess, making use
of the simplified Matlab models for gradient informationpguces equally feasible
results in substantially less computational time. It wilwnbe assumed that these
models are sufficiently representative of the system fodigrd information.



5. COMBINED RIDE COMFORT AND HANDLING OPTIMISATION

With the use of simplified models for gradient informatiodigdated, the models are
combined to represent the vehicle performing a handlingmarre on a rough terrain.
For the combined ride comfort and handling optimisatioe, ¥ehicle performs the
double lane change over the Belgian paving. The full sinmatodel will be used
as before once per iteration for the exact objective functialues and constraint
values. The Matlab models will remain the same. However/ithe model will be
used to observe the ride dynamics gradient tendencies,hendandling model for
the handling dynamics gradient tendencies. A study was waiad as to how best
to consider the optimisation of the compromise passiveenuspn. This is done to
determine the methodology needed when including the costrategy of the4S,
system for optimisation.

5.1. Handling Followed by Ride Comfort Optimisation

First the vehicle will be optimised for handling, subjecttte tyre hop inequality
constraints, and then optimised for ride comfort startirgf the point where the
handling optimisation converged. The ride comfort is ojged subject to the tyre
hop inequality constraints, and an additional inequalitgstraint that the optimised
handling f; ., may not decrease by more than 20% (compared to the optimised
handling result) as stated below:

g(x)hand = lo(fhand (X) - 1'2f}’;and) <0 (7)

The 20% parameter was selected as it was found that for ggatifon runs where the
handling constraint was 5 or 10 %, the handling constraintccaot be satisfied, if
improvements in ride comfort were achieved. The value of 262 thus found to be
a reasonable constraint value. The multiplication by 10 wsesd to better normalise
the constraint values between -1 and 1.

The optimisation convergence history for two design vdeahs presented in
Figure 10. The equivalent tyre hop constraint is plotted efindd in equation (6).
The top graph refers to the handling optimisation where thediive function is
defined as in equation (4), and the bottom graph is for theathefort optimisation,
where the objective function is defined as in equation (3kalt be seen that the
optimisation convergence history is well behaved for thedtiag optimisation, and
results in an objective function value of approximatelyl0.@hich is equivalent to
a body roll angle of 3, and a RMS body roll velocity of 1.3/s. The ride comfort
optimisation, subjected to the handling constraint, hasalp behaved convergence
history, and does not converge to a clear optimum. If iterafi8 is considered as
the best minimum, the driver RMS vertical acceleration igpragimately 2.2m /s?,
which is considered as extremely uncomfortable [7], andla¢e be improved.



9

5.2. Maximum of Ride Comfort and Handling

The results of handling followed by ride comfort optimisetj prompted the
investigation into using the maximum value of the four nolisgal objective function
parameters (roll angle, RMS roll velocity, driver comfgrgssenger comfort) as the
objective function value. The objective function is thusiked as follows:

f(.%') = max(f(x)handa f(x)ride) (8)

The disadvantage of the nature of this objective functiorthie now inherent
discontinuities due to the maximum function. However, vexgsonable results were
achieved as illustrated by Figure 11. In the figuféy)hand is the handling objective
function value as defined by equation (4)x)ride is the ride comfort objective
function as defined by equation (3), and the equivalent tyne ¢onstrainty(z)eq
defined by equation (6). Additionally it is observed that twerall optimum is the
best of the two objectives. When considering the final desagrfiguration iterations
3, 6 and 9, are repeated identical minima, and should beaeresi for the acceptable
band of the design variables, to return objective functimines of approximately 0.32.
This results in vertical RMS accelerations of approximate8m /s?, body roll angle
of 4°, and a RMS roll velocity of 1.9/s. The optimisation convergence took fewer
iterations than the optimisation of handling followed byeicomfort, even though the
objective function is of a discontinuous nature, due to tlaimum function.

The use of the maximum function for the objective functionsvexpanded to
four design variables, and started in the same place as todesign variables, the
middle of the design space. The results, presented in Firifustrate the excellent
convergence to the optimum, of identical magnitude as for design variables, but
the design variable values differ. Although it is eviderdattmultiple local minima
exist, the optimisation converges to identical objectivedtion value minima.

6. SUMMARY OF RESULTS

Presented in Table 1 are the results for the optimisatios.rénom the results it
can be seen that the combined optimisation is a compromiseeba handling and
ride comfort, especially when considering the use of theimar function for the
objective function. If reasonable handling is to be achiewben the ride comfort
suffers, while if good ride comfort is to be achieved then laedling suffers. This
is the traditional compromise, that tHeS, suspension avoids due to the ability to
switch between the optimum handling and ride comfort sg#tiifhe resulting optimal
damping multiplication factors and spring gas volumes agsgnted in Table 2. From
the table itis clear that the ride comfort design paramdieeos the opposite corner of
the design space to the handling design parameters. Algzeabte when observing
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the parameters of the combined optimisation, is that thevglasne lies in the middle

of the design space at 0. 3ut that the damping should be 50% of the current baseline
characteristic. This however, severely affects the hagditability of the vehicle as
can be observed by the higher RMS roll velocity value.

7. CONCLUSIONS

This paper has shown that the use of simplified mathematicadets, of the
computationally intensive full simulation model, for use computing gradient
information, can significantly improve the optimisationopess. Firstly the
optimisation process is significantly faster in terms ofatobptimisation time.
Secondly the simplified models help to reduced numericaden@i the evaluation
of the gradients, resulting in smoother convergence hésof hirdly the simplified
models are sufficiently representative of the vehicle sysi®hen used for gradient
information, although their absolute values may diffed aeed to be properly scaled
before use.

For the handling optimisation, it was found that the two roefhgave identical
optimum solutions, and that the optimal solutions lie aldrgmaximum boundary of
the damper design variable, and the lower boundary of thieggesign variable.

For the ride comfort optimisation, the inclusion of the \&é®s tyre hop was
investigated. It was found that the best results were aeldigxhen including the tyre
hop as an inequality constraint in the optimisation procksgas also found that the
tyre hop tends to constrain the damping parameter from ngntuwards it's lower
boundary constraint.

Both ride comfort and handling were optimised simultanggousd it was found
that the maximum of the normalised ride comfort and handiinjgctives is a feasible
objective function, for determining the compromise optimuwBoth two and four
design variable optimisation were successfully perforn@tparticular interest is
the fact that the spring design variable, lay close to thediridf the design space,
while the damper design variable was decreased to 50% ofithert baseline damper
value. Work is still needed in the accurate description efdbjective and constraint
functions for the combined ride comfort and handling opsiation.

The methodology proposed is thus an efficient means of ogitignia vehicle’s
suspension system for ride comfort and handling. This mtidesgsse of deterministic
gradient based optimisation algorithms most suitable camdpetitive for suspension
optimisation.
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FIGURES 12

Handling Optimisation, Double Lane Change 55 km/h, 2 Variables
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Fig. 1. Handling optimisation convergence histories fdrMSC.ADAMS model, and using the simplified
MATLAB model for gradient information, 2 design variables
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Handling Optimisation, Double Lane Change 55 km/h, 4 Variables, Adams Gradients
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Fig. 2. Handling optimisation convergence history using fall MSC.ADAMS model for gradient
information, 4 design variables
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Handling Optimisation, Double Lane Change 55 km/h, 4 Variables, Matlab Gradients
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Fig. 3. Handling optimisation convergence histories usimg simplified MATLAB model for gradient
information, 4 design variables
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Ride Comfort Optimisati ion of Tyre Hop
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Fig. 4. Implementing tyre hop as a constraint in ride comdgtimisation



Normalised Value

Fig. 5. Observing tyre hop value while performing ride corhfiptimisation
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Normalised value

Normalised value

Fig. 6. Comparison of the optimisation histories for the MSOAMS gradient and simple MATLAB

FIGURES

Ride Optimisation, 40 km/h Belgian Paving, 2 Variables, MSC.ADAMS Gradient
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FIGURES 18

Ride Optimisation, 40 km/h Belgian Paving, 2 variables, MATLAB Only
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Fig. 7. Ride comfort optimisation convergence history feing only the simple Matlab based model, for
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Ride Comfort Optimisation, Belgian Paving 40 km/h, 4 Variables, ADAMS Gradients
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Fig. 8. Ride Comfort optimisation convergence history fate$ign variables using the full MSC.ADAMS
model for gradient information, starting at the optimunmirowo design variables
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Ride Comfort Optimisation, 40 km/h, 4 Variables, MATLAB Gradients
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Fig. 9. Ride Comfort optimisation convergence history fatesign variables using the Matlab model for
gradient information, starting at the optimum from two desvariables. Design variable x1 follows
x3 very closely



21

Normalised value

Normalised value

Fig. 10. Combined convergence history, first handling ojstittion, then ride comfort.
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Combined Optimisation, Double Lane Change on Belgian Paving, 45 km/h, 2 Variables
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Fig. 11. Combined optimisation convergence history, maximof handling and ride comfort objectives, 2
design variables.
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Combined Optimisation, Double Lane Change on Belgian Paving, 45 km/h, 4 Variables
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Fig. 12. Combined optimisation convergence history, maximof handling and ride comfort objectives, 4
design variables.



TABLES

Table 1. Summary of Results for Optimisation Objectives

variables, Fig. #iter.  f*(X)  QYRMS  Ppeak ORMS; GRMS,
opt. run (eqevals) +£0.01  [°/s] [°] [m/s?]  [m/s?]
Handling
2, matgrad 1 12(182) 015 0.57 3.0 B .
2, admsgrad 1 15 (80) 0.15 0.57 3.0 - -
4, admsgrad 2 6 (63) 0.15 0.54 3.2 - -
4, matgrad 3 7(14.4) 0.15 0.55 3.1 - -
Ride
2, matgrad 6 24 (35) 0.13 B - 1.20 1.18
2, admsgrad 6 19 (100) 0.12 - - 1.16 1.14
4, matgrad 9 9 (18) 0.11 - - 1.14 1.08
4, admsgrad 8 7(72) 0.11 - - 1.10 1.10
Combined
2, handling15? 10 6 (9.8) 0.21 1.29 2.9 - -
2, ride after 10 18 (34.2) 0.40 1.52 3.0 2.20 2.18
2, fmaz(T) 11 6 (12.6) 0.32 1.86 4.0 1.78 1.78

4, fraz () 12 7 (20.8) 0.32 1.83 4.0 1.76 1.62
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Table 2. Summary of optimum damper factors and gas volumes

opt. run Fig. dpsff gvolf dpsfr  gvolr
Handling
2, matgrad 1 3.00 0.10 3.00 0.10
2, admsgrad 1 3.00 0.10 3.00 0.10
4, admsgrad 2 2.72 0.24 3.00 0.10
4, matgrad 3 2.89 0.10 2.69 0.10
Ride
2, matgrad 6 0.30 0.51 0.30 0.51
2, admsgrad 6 0.29 0.54 0.29 0.54
4, matgrad 9 0.29 0.56 0.25 0.47
4, admsgrad 8 0.24 0.43 0.27 0.53

Combined
2, handlingl®* 10 1.35 0.10 1.35 0.10
2, ride after 10 0.55 0.17 0.55 0.17
2, fmaz(T) 11 0.51 0.30 0.51 0.30
4, fraz () 12 0.53 0.26 0.40 0.28




