Studying transfers in informal transport networks using volunteered GPS data

Show simple item record

dc.contributor.author Ankunda, G.
dc.contributor.author Venter, C.J. (Christoffel Jacobus)
dc.date.accessioned 2024-11-27T10:00:29Z
dc.date.available 2024-11-27T10:00:29Z
dc.date.issued 2025-04
dc.description.abstract Multimodal integration is an important issue in public transport systems due to its influence on both passenger experience and overall network efficiency. In most countries in the global South, achieving integration is particularly problematic because of the informal nature of most public transport. Decentralised service planning and demand responsiveness lead to often uncoordinated, highly variable service patterns, which are not optimised from a passenger perspective. Efforts to promote integration are also hampered by a lack of planning data on routes, service frequencies, and transfer locations. This research asks whether GPS data supplied by passengers as they move through the network can be used to help form a better understanding of the extent and quality of the transfer experience. The data was collected in the City of Tshwane, South Africa, among informal minibus-taxi passengers. Post-processing involved the use of a machine learning algorithm to identify in-vehicle, wait and walk segments, which were used to identify transfers between one vehicle and another. The results showed that many transfers are spatially efficient with short walk and wait times, but that a minority of transferring passengers may experience very long transfers. Transfers encompass a diverse range of behaviours including pacing, shopping and browsing, and typically involve much more walking than waiting. Transfers also occur across a wide range of locations, but tend to be concentrated in certain nodes and along street segments. Strategies to improve transfer facilities as well as general walkability might be targeted at such locations. The study demonstrated that volunteered GPS data is a promising source of information to help planners understand the transfer experience in multimodal networks in data-poor environments. en_US
dc.description.department Civil Engineering en_US
dc.description.librarian hj2024 en_US
dc.description.sdg SDG-09: Industry, innovation and infrastructure en_US
dc.description.sdg SDG-11:Sustainable cities and communities en_US
dc.description.sponsorship The Centre for Transport Development at the University of Pretoria and partial support from the Mastercard Foundation Scholarship Programme at the University of Pretoria. en_US
dc.description.uri https://www.elsevier.com/locate/tbs en_US
dc.identifier.citation Ankunda, G. & Venter, C. 2025, 'Studying transfers in informal transport networks using volunteered GPS data', Travel Behaviour and Society, vol. 39, art. 100936, pp. 1-11, doi : 10.1016/j.tbs.2024.100936. en_US
dc.identifier.issn 2214-367X (print)
dc.identifier.issn 2214-3688 (online)
dc.identifier.other 10.1016/j.tbs.2024.100936
dc.identifier.uri http://hdl.handle.net/2263/99623
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights 2024 The Authors. Published by Elsevier Ltd on behalf of Hong Kong Society for Transportation Studies. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). en_US
dc.subject Machine learning en_US
dc.subject Transfers en_US
dc.subject Walking time en_US
dc.subject Waiting time en_US
dc.subject Walking distance en_US
dc.subject Global positioning system (GPS) en_US
dc.subject SDG-09: Industry, innovation and infrastructure en_US
dc.subject SDG-11: Sustainable cities and communities en_US
dc.title Studying transfers in informal transport networks using volunteered GPS data en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record