dc.contributor.author |
Ramike, Matshidiso P.
|
|
dc.contributor.author |
Ndungu, Patrick
|
|
dc.contributor.author |
Mamo, Messai A.
|
|
dc.date.accessioned |
2024-10-25T10:53:46Z |
|
dc.date.available |
2024-10-25T10:53:46Z |
|
dc.date.issued |
2023-10-23 |
|
dc.description |
DATA AVAILABILITY : Data is available when request made. |
en_US |
dc.description |
SUPPLEMENTARY MATERIALS : FIGURE S1: Sensors performance measurement setup; FIGURE S2: FTIR spectra of the (a) synthesized ZnO nanostructures, i.e., nanoflowers (N.F.), nanosheets (N.S.), nanorods (N.R.), and nanoparticles (N.P.); (b) candle soot, and (c) purchased cellulose acetate respectively; FIGURE S3: BET isotherm; FIGURE S4: UV-vis diffuse reflectance spectra and bandgap energy values of the (a) synthesized ZnO nanostructures, i.e., nanoflowers (N.F.), nanosheets (N.S.), nanorods (N.R.), and nanoparticles (N.P.); (b) candle soot, and (c) purchased cellulose acetate; FIGURE S5. Dynamic response and recovery curves 3:1:1 mass ratio towards ethanol vapor (a) nanoparticles and (b) calibration curve; (c) nanorod and (d) its calibration curve; (e) nanoflower (f) its calibration curve; FIGURE S6. Dynamic response and recovery curves 2:1:1 mass ratio towards ethanol vapor (g) nanorod and (h) calibration curve; (i) nanosheet and (j) its calibration curve; (k) nanoflower (l) its calibration curve; FIGURE S7: Dynamic response and recovery curves 1:1:1 mass ratio of towards isopropanol vapor (a) nanorod and (b) calibration curve; (c) nanosheet and (d) its calibration curve; (e) nanoflower (f) its calibration curve; FIGURE S8: Static response and recovery curves 1:1:1 mass ratio of towards methanol; TABLE S1: Band gap energy (Eg), Average crystallite size (d) and surface area (A) of nanostructured oxides; TABLE S2: Summary of the performance of the fabricated sensors when detecting ethanol vapour; TABLE S3: Summary of the performance of the fabricated sensors when detecting isopropanol vapor [67–72]. |
en_US |
dc.description.abstract |
Please read abstract in the article. |
en_US |
dc.description.department |
Chemistry |
en_US |
dc.description.librarian |
am2024 |
en_US |
dc.description.sdg |
None |
en_US |
dc.description.sponsorship |
The National Research Foundation of South Africa and the Centre for Nanomaterials Sciences Research, University of Johannesburg, South Africa. |
en_US |
dc.description.uri |
https://www.mdpi.com/journal/nanomaterials |
en_US |
dc.identifier.citation |
Ramike, M.P.; Ndungu,
P.G.; Mamo, M.A. Exploration of the
Different Dimensions of Wurtzite
ZnO Structure Nanomaterials as Gas
Sensors at Room Temperature.
Nanomaterials 2023, 13, 2810. https://DOI.org/10.3390/nano13202810. |
en_US |
dc.identifier.issn |
2079-4991 (online) |
|
dc.identifier.other |
10.3390/nano13202810 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/98781 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
MDPI |
en_US |
dc.rights |
© 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license. |
en_US |
dc.subject |
Semiconductor metal oxides |
en_US |
dc.subject |
Gas sensor |
en_US |
dc.subject |
VOCs |
en_US |
dc.subject |
Polymer composites |
en_US |
dc.subject |
Sensor performance |
en_US |
dc.subject |
X-ray diffraction (XRD) |
en_US |
dc.subject |
Nitrogen sorption |
en_US |
dc.subject |
Fourier transform infrared (FTIR) |
en_US |
dc.subject |
Scanning electron microscopy (SEM) |
en_US |
dc.subject |
Raman spectroscopy |
en_US |
dc.subject |
UV–Vis |
en_US |
dc.subject |
XPS analysis |
en_US |
dc.subject |
Transmission electron microscopy (TEM) |
en_US |
dc.title |
Exploration of the different dimensions of wurtzite ZnO structure nanomaterials as gas sensors at room temperature |
en_US |
dc.type |
Article |
en_US |