Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer : a report of the international immuno-oncology biomarker working group on breast cancer

Show simple item record

dc.contributor.author Thagaard, Jeppe
dc.contributor.author Broeckx, Glenn
dc.contributor.author Page, David B.
dc.contributor.author Jahangir, Chowdhury Arif
dc.contributor.author Verbandt, Sara
dc.contributor.author Kos, Zuzana
dc.contributor.author Gupta, Rajarsi R.
dc.contributor.author Khiroya, Reena
dc.contributor.author Abduljabbar, Khalid
dc.contributor.author Haab, Gabriela Acosta
dc.contributor.author Acs, Balazs
dc.contributor.author Akturk, Guray
dc.contributor.author Almeida, Jonas S.
dc.contributor.author Alvarado‐Cabrero, Isabel
dc.contributor.author Amgad, Mohamed
dc.contributor.author Azmoudeh‐Ardalan, Farid
dc.contributor.author Badve, Sunil
dc.contributor.author Baharun, Nurkhairul Bariyah
dc.contributor.author Balslev, Eva
dc.contributor.author Bellolio, Enrique R.
dc.contributor.author Bheemaraju, Vydehi
dc.contributor.author Blenman, Kim R.M.
dc.contributor.author Botinelly Mendonça Fujimoto, Luciana
dc.contributor.author Bouchmaa, Najat
dc.contributor.author Burgues, Octavio
dc.contributor.author Chardas, Alexandros
dc.contributor.author Cheang, Maggie Chon U.
dc.contributor.author Ciompi, Francesco
dc.contributor.author Cooper, Lee A.D.
dc.contributor.author Coosemans, M.
dc.contributor.author Corredor, German
dc.contributor.author Dahl, Anders B.
dc.contributor.author Dantas Portela, Flavio Luis
dc.contributor.author Deman, Frederik
dc.contributor.author Demaria, Sandra
dc.contributor.author Hansen, Johan Dore
dc.contributor.author Dudgeon, Sarah N.
dc.contributor.author Ebstrup, Thomas
dc.contributor.author Elghazawy, Mahmoud
dc.contributor.author Fernandez‐Martín, Claudio
dc.contributor.author Fox, Stephen B.
dc.contributor.author Gallagher, William M.
dc.contributor.author Giltnane, Jennifer M.
dc.contributor.author Gnjatic, Sacha
dc.contributor.author Gonzalez‐Ericsson, Paula I.
dc.contributor.author Grigoriadis, Anita
dc.contributor.author Halama, Niels
dc.contributor.author Hanna, Matthew G.
dc.contributor.author Harbhajanka, Aparna
dc.contributor.author Hart, Steven N.
dc.contributor.author Hartman, Johan
dc.contributor.author Hauberg, Søren
dc.contributor.author Hewitt, Stephen
dc.contributor.author Hida, Akira I.
dc.contributor.author Horlings, Hugo M.
dc.contributor.author Husain, Zaheed
dc.contributor.author Hytopoulos, Evangelos
dc.contributor.author Irshad, Sheeba
dc.contributor.author Janssen, Emiel A.M.
dc.contributor.author Kahila, Mohamed
dc.contributor.author Kataoka, Tatsuki R.
dc.contributor.author Kawaguchi, Kosuke
dc.contributor.author Kharidehal, Durga
dc.contributor.author Khramtsov, Andrey I.
dc.contributor.author Kiraz, Umay
dc.contributor.author Kirtani, Pawan
dc.contributor.author Kodach, Liudmila L.
dc.contributor.author Korski, Konstanty
dc.contributor.author Kovacs, Aniko
dc.contributor.author Laenkholm, Anne‐Vibeke
dc.contributor.author Lang‐Schwarz, Corinna
dc.contributor.author Larsimont, Denis
dc.contributor.author Lennerz, Jochen K.
dc.contributor.author Lerousseau, Marvin
dc.contributor.author Li, Xiaoxian
dc.contributor.author Ly, Amy
dc.contributor.author Madabhushi, Anant
dc.contributor.author Maley, Sai K.
dc.contributor.author Manur Narasimhamurthy, Vidya
dc.contributor.author Marks, Douglas K.
dc.contributor.author McDonald, Elizabeth S.
dc.contributor.author Mehrotra, Ravi
dc.contributor.author Michiels, Stefan
dc.contributor.author Minhas, Fayyaz ul Amir Afsar
dc.contributor.author Mittal, Shachi
dc.contributor.author Moore, David A.
dc.contributor.author Mushtaq, Shamim
dc.contributor.author Nighat, Hussain
dc.contributor.author Papathomas, Thomas
dc.contributor.author Penault‐Llorca, Frederique
dc.contributor.author Perera, Rashindrie D.
dc.contributor.author Pinard, Christopher J.
dc.contributor.author Pinto‐Cardenas, Juan Carlos
dc.contributor.author Pruneri, Giancarlo
dc.contributor.author Pusztai, Lajos
dc.contributor.author Rahman, Arman
dc.contributor.author Rajpoot, Nasir Mahmood
dc.contributor.author Rapoport, Bernardo Leon
dc.contributor.author Rau, Tilman T.
dc.contributor.author Reis‐Filho, Jorge S.
dc.contributor.author Ribeiro, Joana M.
dc.contributor.author Rimm, David
dc.contributor.author Roslind, Anne
dc.contributor.author Vincent-Salomon, Anne
dc.contributor.author Salto‐Tellez, Manuel
dc.contributor.author Saltz, Joel
dc.contributor.author Sayed, Shahin
dc.contributor.author Scott, Ely
dc.contributor.author Siziopikou, Kalliopi P.
dc.contributor.author Sotiriou, Christos
dc.contributor.author Stenzinger, Albrecht
dc.contributor.author Sughayer, Maher A.
dc.contributor.author Sur, Daniel
dc.contributor.author Fineberg, Susan
dc.contributor.author Symmans, Fraser
dc.contributor.author Tanaka, Sunao
dc.contributor.author Taxter, Timothy
dc.contributor.author Tejpar, Sabine
dc.contributor.author Teuwen, Jonas
dc.contributor.author Thompson, E. Aubrey
dc.contributor.author Tramm, Trine
dc.contributor.author Tran, William T.
dc.contributor.author Van der Laak, Jeroen
dc.contributor.author Van Diest, Paul J.
dc.contributor.author Verghese, Gregory E.
dc.contributor.author Viale, Giuseppe
dc.contributor.author Vieth, Michael
dc.contributor.author Wahab, Noorul
dc.contributor.author Walter, Thomas
dc.contributor.author Waumans, Yannick
dc.contributor.author Wen, Hannah Y.
dc.contributor.author Yang, Wentao
dc.contributor.author Yuan, Yinyin
dc.contributor.author Md Zin, Reena
dc.contributor.author Adams, Sylvia
dc.contributor.author Bartlett, John
dc.contributor.author Loibl, Sibylle
dc.contributor.author Denkert, Carsten
dc.contributor.author Savas, Peter
dc.contributor.author Loi, Sherene
dc.contributor.author Salgado, Roberto
dc.contributor.author Stovgaard, Elisabeth Specht
dc.date.accessioned 2024-10-18T10:50:19Z
dc.date.available 2024-10-18T10:50:19Z
dc.date.issued 2023-08-23
dc.description.abstract The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. en_US
dc.description.department Immunology en_US
dc.description.librarian am2024 en_US
dc.description.sdg SDG-03:Good heatlh and well-being en_US
dc.description.sdg SDG-09: Industry, innovation and infrastructure en_US
dc.description.sponsorship Gilead Breast Cancer Research Grant; Internal Funds KU Leuven; Swedish Society for Medical Research; Swedish Breast Cancer Association; Peer Reviewed Cancer Research Program; US Department of Defense; Mayo Clinic Breast Cancer SPORE grant; Horizon 2020 European Union Research and Innovation Programme; NHMRC; Shared Island Fund; Irish Cancer Society; Science Foundation Ireland Investigator Programme; Science Foundation Ireland Strategic Partnership Programme; National Institutes of Health; Cancer Research UK; Japan Society for the Promotion of Science; Marie Sklodowska Curie Grant; National Cancer Institute.; National Heart, Lung and Blood Institute; National Institute of Biomedical Imaging and Bioengineering; US Department of Veterans Affairs Biomedical Laboratory Research; Breast Cancer Research Program; Prostate Cancer Research Program; Lung Cancer Research Program; Kidney Precision Medicine Project; EPSRC; ARC, La Ligue contre le Cancer; Melbourne Research Scholarship; Peter MacCallum Cancer Centre; Dutch Cancer Society and the Dutch Ministry of Health, Welfare and Sport Breast Cancer Research Foundation; Breast Cancer Now; Agence Nationale de la Recherche; National Breast Cancer Foundation of Australia; National Health and Medical Council of Australia. en_US
dc.description.uri https://pathsocjournals.onlinelibrary.wiley.com/journal/10969896 en_US
dc.identifier.citation Thagaard, J., Broeckx, G., Page, C.B. et al. 2023, 'Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer : a report of the international immuno-oncology biomarker working group on breast cancer', Journal of Pathology, vol. 260, pp. 498-513. DOI: 10.1002/path.6155 en_US
dc.identifier.issn 0022-4480 (print)
dc.identifier.issn 1477-8556 (online)
dc.identifier.other 10.1002/path.6155
dc.identifier.uri http://hdl.handle.net/2263/98670
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.rights © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License. en_US
dc.subject Deep learning en_US
dc.subject Machine learning en_US
dc.subject Digital pathology en_US
dc.subject Guidelines en_US
dc.subject Image analysis en_US
dc.subject Pitfalls en_US
dc.subject Prognostic biomarker en_US
dc.subject Triple-negative breast cancer en_US
dc.subject Tumor-infiltrating lymphocytes en_US
dc.subject SDG-03: Good health and well-being en_US
dc.subject SDG-09: Industry, innovation and infrastructure en_US
dc.subject Tumor-infiltrating lymphocytes (TILs) en_US
dc.title Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer : a report of the international immuno-oncology biomarker working group on breast cancer en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record