Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer : a report of the international immuno-oncology biomarker working group on breast cancer
Thagaard, Jeppe; Broeckx, Glenn; Page, David B.; Jahangir, Chowdhury Arif; Verbandt, Sara; Kos, Zuzana; Gupta, Rajarsi R.; Khiroya, Reena; Abduljabbar, Khalid; Haab, Gabriela Acosta; Acs, Balazs; Akturk, Guray; Almeida, Jonas S.; Alvarado‐Cabrero, Isabel; Amgad, Mohamed; Azmoudeh‐Ardalan, Farid; Badve, Sunil; Baharun, Nurkhairul Bariyah; Balslev, Eva; Bellolio, Enrique R.; Bheemaraju, Vydehi; Blenman, Kim R.M.; Botinelly Mendonça Fujimoto, Luciana; Bouchmaa, Najat; Burgues, Octavio; Chardas, Alexandros; Cheang, Maggie Chon U.; Ciompi, Francesco; Cooper, Lee A.D.; Coosemans, M.; Corredor, German; Dahl, Anders B.; Dantas Portela, Flavio Luis; Deman, Frederik; Demaria, Sandra; Hansen, Johan Dore; Dudgeon, Sarah N.; Ebstrup, Thomas; Elghazawy, Mahmoud; Fernandez‐Martín, Claudio; Fox, Stephen B.; Gallagher, William M.; Giltnane, Jennifer M.; Gnjatic, Sacha; Gonzalez‐Ericsson, Paula I.; Grigoriadis, Anita; Halama, Niels; Hanna, Matthew G.; Harbhajanka, Aparna; Hart, Steven N.; Hartman, Johan; Hauberg, Søren; Hewitt, Stephen; Hida, Akira I.; Horlings, Hugo M.; Husain, Zaheed; Hytopoulos, Evangelos; Irshad, Sheeba; Janssen, Emiel A.M.; Kahila, Mohamed; Kataoka, Tatsuki R.; Kawaguchi, Kosuke; Kharidehal, Durga; Khramtsov, Andrey I.; Kiraz, Umay; Kirtani, Pawan; Kodach, Liudmila L.; Korski, Konstanty; Kovacs, Aniko; Laenkholm, Anne‐Vibeke; Lang‐Schwarz, Corinna; Larsimont, Denis; Lennerz, Jochen K.; Lerousseau, Marvin; Li, Xiaoxian; Ly, Amy; Madabhushi, Anant; Maley, Sai K.; Manur Narasimhamurthy, Vidya; Marks, Douglas K.; McDonald, Elizabeth S.; Mehrotra, Ravi; Michiels, Stefan; Minhas, Fayyaz ul Amir Afsar; Mittal, Shachi; Moore, David A.; Mushtaq, Shamim; Nighat, Hussain; Papathomas, Thomas; Penault‐Llorca, Frederique; Perera, Rashindrie D.; Pinard, Christopher J.; Pinto‐Cardenas, Juan Carlos; Pruneri, Giancarlo; Pusztai, Lajos; Rahman, Arman; Rajpoot, Nasir Mahmood; Rapoport, Bernardo Leon; Rau, Tilman T.; Reis‐Filho, Jorge S.; Ribeiro, Joana M.; Rimm, David; Roslind, Anne; Vincent-Salomon, Anne; Salto‐Tellez, Manuel; Saltz, Joel; Sayed, Shahin; Scott, Ely; Siziopikou, Kalliopi P.; Sotiriou, Christos; Stenzinger, Albrecht; Sughayer, Maher A.; Sur, Daniel; Fineberg, Susan; Symmans, Fraser; Tanaka, Sunao; Taxter, Timothy; Tejpar, Sabine; Teuwen, Jonas; Thompson, E. Aubrey; Tramm, Trine; Tran, William T.; Van der Laak, Jeroen; Van Diest, Paul J.; Verghese, Gregory E.; Viale, Giuseppe; Vieth, Michael; Wahab, Noorul; Walter, Thomas; Waumans, Yannick; Wen, Hannah Y.; Yang, Wentao; Yuan, Yinyin; Md Zin, Reena; Adams, Sylvia; Bartlett, John; Loibl, Sibylle; Denkert, Carsten; Savas, Peter; Loi, Sherene; Salgado, Roberto; Stovgaard, Elisabeth Specht
Date:
2023-08-23
Abstract:
The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating
lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen
receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational
assessments of TILs might complement manual TIL assessment in trial and daily practices is currently
debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results.
We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying
the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four
main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation
issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by
performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption
of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues
that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and
routine clinical management of patients with triple-negative breast cancer.