dc.contributor.author |
Wilken, Pieter Markus
|
|
dc.contributor.author |
Lane, Frances Alice
|
|
dc.contributor.author |
Steenkamp, Emma Theodora
|
|
dc.contributor.author |
Wingfield, Michael J.
|
|
dc.contributor.author |
Wingfield, Brenda D.
|
|
dc.date.accessioned |
2024-08-30T06:59:04Z |
|
dc.date.available |
2024-08-30T06:59:04Z |
|
dc.date.issued |
2024-02 |
|
dc.description.abstract |
Unidirectional mating-type switching is a form of homothallic reproduction known only in a small number of filamentous ascomycetes. Their ascospores can give rise to either self-sterile isolates that require compatible partners for subsequent sexual reproduction, or self-fertile individuals capable of completing this process in isolation. The limited studies previously conducted in these fungi suggest that the differences in mating specificity are determined by the architecture of the MAT1 locus. In self-fertile isolates that have not undergone unidirectional mating-type switching, the locus contains both MAT1-1 and MAT1-2 mating-type genes, typical of primary homothallism. In the self-sterile isolates produced after a switching event, the MAT1-2 genes are lacking from the locus, likely due to a recombination-mediated deletion of the MAT1-2 gene information. To determine whether these arrangements of the MAT1 locus support unidirectional mating-type switching in the Ceratocystidaceae, the largest known fungal assemblage capable of this reproduction strategy, a combination of genetic and genomic approaches were used. The MAT1 locus was annotated in representative species of Ceratocystis, Endoconidiophora, and Davidsoniella. In all cases, MAT1-2 genes interrupted the MAT1-1–1 gene in self-fertile isolates. The MAT1-2 genes were flanked by two copies of a direct repeat that accurately predicted the boundaries of the deletion event that would yield the MAT1 locus of self-sterile isolates. Although the relative position of the MAT1-2 gene region differed among species, it always disrupted the MAT1-1–1 gene and/or its expression in the self-fertile MAT1 locus. Following switching, this gene and/or its expression was restored in the self-sterile arrangement of the locus. This mirrors what has been reported in other species capable of unidirectional mating-type switching, providing the strongest support for a conserved MAT1 locus structure that is associated with this process. This study contributes to our understanding of the evolution of unidirectional mating-type switching. |
en_US |
dc.description.department |
Biochemistry |
en_US |
dc.description.department |
Forestry and Agricultural Biotechnology Institute (FABI) |
en_US |
dc.description.department |
Genetics |
en_US |
dc.description.department |
Microbiology and Plant Pathology |
en_US |
dc.description.librarian |
hj2024 |
en_US |
dc.description.sdg |
SDG-15:Life on land |
en_US |
dc.description.sponsorship |
The Claude Leon Foundation and the University of Pretoria, the South African Department of Science and Technology (DST) and National Research Foundation (NRF) for funding via the Centres of Excellence programme (Centre of Excellence in Tree Heath Biotechnology) and the South African Research Chairs Initiative (SARChI; SARChI Chair in Fungal Genomics). |
en_US |
dc.description.uri |
https://www.elsevier.com/locate/yfgbi |
en_US |
dc.identifier.citation |
Wilken, P.M., Lane, F.A., Steenkamp, E.T. et al. 2024, 'Unidirectional mating-type switching is underpinned by a conserved MAT1 locus architecture', Fungal Genetics and Biology, vol. 170, art. 103859, pp. 1-10, doi : 10.1016/j.fgb.2023.103859. |
en_US |
dc.identifier.issn |
1087-1845 |
|
dc.identifier.other |
10.1016/j.fgb.2023.103859 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/97933 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier |
en_US |
dc.rights |
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. |
en_US |
dc.subject |
Sexual reproduction |
en_US |
dc.subject |
Ceratocystidaceae |
en_US |
dc.subject |
Ceratocystis |
en_US |
dc.subject |
Davidsoniella |
en_US |
dc.subject |
Endoconidiophora |
en_US |
dc.subject |
SDG-15: Life on land |
en_US |
dc.title |
Unidirectional mating-type switching is underpinned by a conserved MAT1 locus architecture |
en_US |
dc.type |
Article |
en_US |