dc.contributor.author |
Nduku, Lwandile
|
|
dc.contributor.author |
Munghemezulu, Cilence
|
|
dc.contributor.author |
Mashaba-Munghemezulu, Zinhle
|
|
dc.contributor.author |
Ratshiedana, Phathutshedzo Eugene
|
|
dc.contributor.author |
Sibanda, Sipho
|
|
dc.contributor.author |
Chirima, Johannes George
|
|
dc.date.accessioned |
2024-08-01T09:08:22Z |
|
dc.date.available |
2024-08-01T09:08:22Z |
|
dc.date.issued |
2024-06 |
|
dc.description |
This article belongs to the Special Issue titled 'Application of Remote Sensing and GIS in Agricultural Engineering'. |
en_US |
dc.description |
DATA AVAILABILITY STATEMENT : Data used in this study will be made available upon request. |
en_US |
dc.description.abstract |
Please read abstract in article. |
en_US |
dc.description.department |
Geography, Geoinformatics and Meteorology |
en_US |
dc.description.sdg |
SDG-02:Zero Hunger |
en_US |
dc.description.sdg |
SDG-09: Industry, innovation and infrastructure |
en_US |
dc.description.sdg |
SDG-15:Life on land |
en_US |
dc.description.sponsorship |
The Council for Scientific and Industrial Research (CSIR), the Department of Science and Innovation (DSI), the Agricultural Research Council-Natural Resources and Engineering (ARC-NRE), and National Research Foundation (NRF). |
en_US |
dc.description.uri |
http://www.mdpi.com/journal/agriengineering |
en_US |
dc.identifier.citation |
Nduku, L.; Munghemezulu,
C.; Mashaba-Munghemezulu, Z.;
Ratshiedana, P.E.; Sibanda, S.;
Chirima, J.G. Synergetic Use of
Sentinel-1 and Sentinel-2 Data for
Wheat-Crop Height Monitoring Using
Machine Learning. AgriEngineering
2024, 6, 1093–1116. https://doi.org/10.3390/agriengineering6020063. |
en_US |
dc.identifier.issn |
2624-7402 (online) |
|
dc.identifier.other |
10.3390/agriengineering6020063 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/97389 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
MDPI |
en_US |
dc.rights |
© 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/). |
en_US |
dc.subject |
Crop height |
en_US |
dc.subject |
Sentinel-1 |
en_US |
dc.subject |
Sentinel-2 |
en_US |
dc.subject |
Random forest regression |
en_US |
dc.subject |
Support vector machine regression |
en_US |
dc.subject |
Wheat |
en_US |
dc.subject |
Synthetic aperture radar (SAR) |
en_US |
dc.subject |
Optimized random forest regression (RFR) |
en_US |
dc.subject |
Support vector machine regression (SVMR) |
en_US |
dc.subject |
Decision tree regression (DTR) |
en_US |
dc.subject |
Neural network regression (NNR) |
en_US |
dc.subject |
Machine-learning algorithms |
en_US |
dc.subject |
SDG-02: Zero hunger |
en_US |
dc.subject |
SDG-09: Industry, innovation and infrastructure |
en_US |
dc.subject |
SDG-15: Life on land |
en_US |
dc.title |
Synergetic use of Sentinel-1 and Sentinel-2 data for wheat-crop height monitoring using machine learning |
en_US |
dc.type |
Article |
en_US |