Synergetic use of Sentinel-1 and Sentinel-2 data for wheat-crop height monitoring using machine learning

Show simple item record

dc.contributor.author Nduku, Lwandile
dc.contributor.author Munghemezulu, Cilence
dc.contributor.author Mashaba-Munghemezulu, Zinhle
dc.contributor.author Ratshiedana, Phathutshedzo Eugene
dc.contributor.author Sibanda, Sipho
dc.contributor.author Chirima, Johannes George
dc.date.accessioned 2024-08-01T09:08:22Z
dc.date.available 2024-08-01T09:08:22Z
dc.date.issued 2024-06
dc.description This article belongs to the Special Issue titled 'Application of Remote Sensing and GIS in Agricultural Engineering'. en_US
dc.description DATA AVAILABILITY STATEMENT : Data used in this study will be made available upon request. en_US
dc.description.abstract Please read abstract in article. en_US
dc.description.department Geography, Geoinformatics and Meteorology en_US
dc.description.sdg SDG-02:Zero Hunger en_US
dc.description.sdg SDG-09: Industry, innovation and infrastructure en_US
dc.description.sdg SDG-15:Life on land en_US
dc.description.sponsorship The Council for Scientific and Industrial Research (CSIR), the Department of Science and Innovation (DSI), the Agricultural Research Council-Natural Resources and Engineering (ARC-NRE), and National Research Foundation (NRF). en_US
dc.description.uri http://www.mdpi.com/journal/agriengineering en_US
dc.identifier.citation Nduku, L.; Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Ratshiedana, P.E.; Sibanda, S.; Chirima, J.G. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Wheat-Crop Height Monitoring Using Machine Learning. AgriEngineering 2024, 6, 1093–1116. https://doi.org/10.3390/agriengineering6020063. en_US
dc.identifier.issn 2624-7402 (online)
dc.identifier.other 10.3390/agriengineering6020063
dc.identifier.uri http://hdl.handle.net/2263/97389
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.rights © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). en_US
dc.subject Crop height en_US
dc.subject Sentinel-1 en_US
dc.subject Sentinel-2 en_US
dc.subject Random forest regression en_US
dc.subject Support vector machine regression en_US
dc.subject Wheat en_US
dc.subject Synthetic aperture radar (SAR) en_US
dc.subject Optimized random forest regression (RFR) en_US
dc.subject Support vector machine regression (SVMR) en_US
dc.subject Decision tree regression (DTR) en_US
dc.subject Neural network regression (NNR) en_US
dc.subject Machine-learning algorithms en_US
dc.subject SDG-02: Zero hunger en_US
dc.subject SDG-09: Industry, innovation and infrastructure en_US
dc.subject SDG-15: Life on land en_US
dc.title Synergetic use of Sentinel-1 and Sentinel-2 data for wheat-crop height monitoring using machine learning en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record