Abstract:
Plastics, which majorly consist of polypropylene (PP), polyethylene (linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE) and high-density polyethylene (HDPE)), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), etc., are the most abundant municipal solid wastes (MSW). They have been utilized as a cheap carbon feedstock in the synthesis of carbon nanotubes (CNTs) because of their high hydrocarbon content, mainly carbon and hydrogen, especially for the polyolefins. In this review, the detailed progress made so far in the use of plastics (both waste and virgin) as cheap carbon feedstock in the synthesis of CNTs (only) over the years is studied. The primary aim of this work is to provide an expansive landscape made so far, especially in the areas of catalysts, catalyst supports, and the methods employed in their preparations and other operational growth conditions, as well as already explored applications of plastic-derived CNTs. This is to enable researchers to easily access, understand, and summarise previous works done in this area, forging ahead towards improving the yield and quality of plastic-derived CNTs, which could extend their market and use in other purity-sensitive applications.