dc.contributor.author |
Duvenhage, Rocco de Villiers
|
|
dc.date.accessioned |
2024-03-27T05:04:33Z |
|
dc.date.available |
2024-03-27T05:04:33Z |
|
dc.date.issued |
2023-11 |
|
dc.description.abstract |
We introduce and study a class of quadratic Wasserstein distances on spaces consisting of generalized dynamical systems on a von Neumann algebra. We emphasize how symmetry of such a Wasserstein distance arises, but also study the asymmetric case. This setup is illustrated in the context of reduced dynamics, and a number of simple examples are also presented. |
en_US |
dc.description.department |
Physics |
en_US |
dc.description.librarian |
am2024 |
en_US |
dc.description.sdg |
None |
en_US |
dc.description.uri |
http://www.elsevier.com/locate/jmaa |
en_US |
dc.identifier.citation |
Duvenhage, R. 2023, 'Wasserstein distance between noncommutative dynamical systems', Journal of Mathematical Analysis and Applications, vol. 527, art. 127353, pp. 1-26. https://DOI.org/10.1016/j.jmaa.2023.127353. |
en_US |
dc.identifier.issn |
0022-247X |
|
dc.identifier.other |
10.1016/j.jmaa.2023.127353 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/95367 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier |
en_US |
dc.rights |
© 2023 The Author(s).
This is an open access article under the CC BY-NC-ND license. |
en_US |
dc.subject |
Optimal transport |
en_US |
dc.subject |
Wasserstein distance von |
en_US |
dc.subject |
Wasserstein distance |
en_US |
dc.subject |
Von Neumann algebras |
en_US |
dc.subject |
States |
en_US |
dc.subject |
Dynamical systems |
en_US |
dc.subject |
Open systems |
en_US |
dc.title |
Wasserstein distance between noncommutative dynamical systems |
en_US |
dc.type |
Article |
en_US |