Wasserstein distance between noncommutative dynamical systems

Show simple item record

dc.contributor.author Duvenhage, Rocco de Villiers
dc.date.accessioned 2024-03-27T05:04:33Z
dc.date.available 2024-03-27T05:04:33Z
dc.date.issued 2023-11
dc.description.abstract We introduce and study a class of quadratic Wasserstein distances on spaces consisting of generalized dynamical systems on a von Neumann algebra. We emphasize how symmetry of such a Wasserstein distance arises, but also study the asymmetric case. This setup is illustrated in the context of reduced dynamics, and a number of simple examples are also presented. en_US
dc.description.department Physics en_US
dc.description.librarian am2024 en_US
dc.description.sdg None en_US
dc.description.uri http://www.elsevier.com/locate/jmaa en_US
dc.identifier.citation Duvenhage, R. 2023, 'Wasserstein distance between noncommutative dynamical systems', Journal of Mathematical Analysis and Applications, vol. 527, art. 127353, pp. 1-26. https://DOI.org/10.1016/j.jmaa.2023.127353. en_US
dc.identifier.issn 0022-247X
dc.identifier.other 10.1016/j.jmaa.2023.127353
dc.identifier.uri http://hdl.handle.net/2263/95367
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights © 2023 The Author(s). This is an open access article under the CC BY-NC-ND license. en_US
dc.subject Optimal transport en_US
dc.subject Wasserstein distance von en_US
dc.subject Wasserstein distance en_US
dc.subject Von Neumann algebras en_US
dc.subject States en_US
dc.subject Dynamical systems en_US
dc.subject Open systems en_US
dc.title Wasserstein distance between noncommutative dynamical systems en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record