Abstract:
Transitional vertebrae at the thoracolumbar region are called thoracolumbar transitional vertebrae (TLTV) and retain physical features from the thoracic and lumbar regions. Since TLTV were first classified 40 years ago, there has been much discrepancy regarding its features, identification and clinical relevance. Vertebral body levels are used in the medical field as a frame of reference to locate specific organs, vessels, nerves or landmarks. Any numeric variation or deviation in the vertebral column may lead to clinical errors. Previous findings have suggested a high association between numeric variation and the presence of TLTV. Therefore, the aim of this study was to identify the types of TLTV observed and to identify any possible associated numeric variation in the vertebral column. This study also aimed to validate the established technique to quantitatively differentiate TLTV from T12 and L1 at the thoracolumbar junction using skeletal remains from a South African population group. Skeletal remains (n= 187) remains from the Pretoria bone collection were assessed. Measurements were taken of the angle of the superior zygapophyseal processes of the last thoracic vertebra (T12), the first lumbar (L1), and identified TLTV. The results indicate a TLTV prevalence of 35% (n= 66/187). The results show that each vertebral type (T12, L1, TLTV) fall into independent confidence intervals: T12 is 188° ± 9.22 (CI: 187° <μ< 189.6°), 110° ± 7.52 (CI: 109.2° <μ< 111.3°) in L1, and 135° ± 24.51 (CI: 130.4° <μ< 139.1°) in the TLTV. This study observed that 70% of cases with TLTV was associated with numeric variation in the spine, both homeotic and meristic and that TLTV has a 35% prevalence. The results clearly show that quantitative morphometric analysis can effectively differentiate TLTV from other vertebral types at the thoracolumbar junction in skeletal remains.