dc.contributor.author |
Fresen, Daniel J.
|
|
dc.date.accessioned |
2023-09-12T10:36:29Z |
|
dc.date.available |
2023-09-12T10:36:29Z |
|
dc.date.issued |
2023 |
|
dc.description.abstract |
The classical Gaussian concentration inequality for Lipschitz functions is adapted to a setting where the classical assumptions (i.e. Lipschitz and Gaussian) are not met. The theory is more direct than much of the existing theory designed to handle related generalizations. An application is presented to linear combinations of heavy tailed random variables. |
en_US |
dc.description.department |
Mathematics and Applied Mathematics |
en_US |
dc.description.librarian |
hj2023 |
en_US |
dc.description.uri |
https://www.tandfonline.com/loi/tqma20 |
en_US |
dc.identifier.citation |
Daniel J. Fresen (2023) Variations and extensions of the Gaussian concentration inequality, Part I, Quaestiones Mathematicae, 46:7, 1367-1384, DOI:
10.2989/16073606.2022.2074908. |
en_US |
dc.identifier.issn |
1607-3606 (print) |
|
dc.identifier.issn |
1727-933X (online) |
|
dc.identifier.other |
10.2989/16073606.2022.2074908 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/92274 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Taylor and Francis |
en_US |
dc.rights |
© 2022 NISC (Pty) Ltd. This is an electronic version of an article published in Quaestiones Mathematicae, vol. 46, no. 7, pp. 1367-1384, 2022. doi : 10.2989/16073606.2022.2074908. Quaestiones Mathematicae is available online at: https://www.tandfonline.com/loi/tqma20. |
en_US |
dc.subject |
Gaussian concentration inequality |
en_US |
dc.subject |
Heavy tailed random variables |
en_US |
dc.title |
Variations and extensions of the Gaussian concentration inequality, Part I |
en_US |
dc.type |
Postprint Article |
en_US |