dc.contributor.author |
Lotfi, Rasoul
|
|
dc.contributor.author |
Shahsavani, Davood
|
|
dc.contributor.author |
Arashi, Mohammad
|
|
dc.date.accessioned |
2023-09-04T15:03:15Z |
|
dc.date.available |
2023-09-04T15:03:15Z |
|
dc.date.issued |
2022-11-01 |
|
dc.description.abstract |
Classification using linear discriminant analysis (LDA) is challenging when the number
of variables is large relative to the number of observations. Algorithms such as LDA require the
computation of the feature vector’s precision matrices. In a high-dimension setting, due to the
singularity of the covariance matrix, it is not possible to estimate the maximum likelihood estimator
of the precision matrix. In this paper, we employ the Stein-type shrinkage estimation of Ledoit and
Wolf for high-dimensional data classification. The proposed approach’s efficiency is numerically
compared to existing methods, including LDA, cross-validation, gLasso, and SVM. We use the
misclassification error criterion for comparison. |
en_US |
dc.description.department |
Statistics |
en_US |
dc.description.librarian |
am2023 |
en_US |
dc.description.sponsorship |
The National Research Foundation (NRF) of South Africa, SARChI Research Chair UID: 71199, the South African DST-NRF-MRC SARChI Research Chair in Biostatistics; STATOMET at the Department of Statistics at the University of Pretoria, South Africa and a grant from Ferdowsi University of Mashhad. |
en_US |
dc.description.uri |
https://www.mdpi.com/journal/mathematics |
en_US |
dc.identifier.citation |
Lotfi, R.; Shahsavani, D.;
Arashi, M. Classification in High
Dimension Using the Ledoit–Wolf
Shrinkage Method. Mathematics 2022,
10, 4069. https://doi.org/10.3390/math10214069. |
en_US |
dc.identifier.issn |
2227-7390 |
|
dc.identifier.other |
10.3390/math10214069 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/92199 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
MDPI |
en_US |
dc.rights |
© 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license. |
en_US |
dc.subject |
Classification |
en_US |
dc.subject |
High-dimensional data |
en_US |
dc.subject |
Ledoit and Wolf shrinkage method |
en_US |
dc.subject |
Stein-type shrinkage |
en_US |
dc.subject |
Linear discriminant analysis (LDA) |
en_US |
dc.subject |
Support vector machine (SVM) |
en_US |
dc.title |
Classification in high dimension using the Ledoit-Wolf shrinkage method |
en_US |
dc.type |
Article |
en_US |