dc.contributor.author |
Anabanti, Chimere S.
|
|
dc.contributor.author |
Hart, S.B.
|
|
dc.date.accessioned |
2023-07-05T11:04:58Z |
|
dc.date.issued |
2022-10 |
|
dc.description.abstract |
No group has exactly one or two nonpower subgroups. We classify groups containing exactly three nonpower subgroups and show that there is a unique finite group with exactly four nonpower subgroups. Finally, we show that given any integer k greater than 4 , there are infinitely many groups with exactly k nonpower subgroups. |
en_US |
dc.description.department |
Mathematics and Applied Mathematics |
en_US |
dc.description.embargo |
2023-07-10 |
|
dc.description.librarian |
hj2023 |
en_US |
dc.description.uri |
https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society |
en_US |
dc.identifier.citation |
Anabanti, C.S. & Hart, S.B. 2022, 'Groups with a given number of nonpower subgroups', Bulletin of the Australian Mathematical Society, vol. 106, no. 2, pp. 315-319, doi : 10.1017/S0004972721001179. |
en_US |
dc.identifier.issn |
0004-9727 (print) |
|
dc.identifier.issn |
1755-1633 (online) |
|
dc.identifier.other |
10.1017/S0004972721001179 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/91281 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Cambridge University Press |
en_US |
dc.rights |
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc. |
en_US |
dc.subject |
Counting subgroups |
en_US |
dc.subject |
Nonpower subgroups |
en_US |
dc.subject |
Finite groups |
en_US |
dc.title |
Groups with a given number of nonpower subgroups |
en_US |
dc.type |
Postprint Article |
en_US |