Ensemble averaging using remote sensing data to model spatiotemporal PM10 concentrations in sparsely monitored South Africa

Show simple item record

dc.contributor.author Arowosegbe, Oluwaseyi Olalekan
dc.contributor.author Roeoesli, Martin
dc.contributor.author Kuenzli, Nino
dc.contributor.author Saucy, Apolline
dc.contributor.author Adebayo-Ojo, Temitope Christina
dc.contributor.author Schwartz, Joel
dc.contributor.author Kebalepile, Moses Mogakolodi
dc.contributor.author Jeebhay, Mohamed Fareed
dc.contributor.author Dalvie, Mohamed Aqiel
dc.contributor.author De Hoogh, Kees
dc.date.accessioned 2023-06-14T09:57:43Z
dc.date.available 2023-06-14T09:57:43Z
dc.date.issued 2022-10
dc.description DATA AVAILABILITY : Data will be made available on request. en_US
dc.description.abstract Please read abstract in the article. en_US
dc.description.department Education Innovation en_US
dc.description.librarian hj2023 en_US
dc.description.sponsorship This study is part of the Joint South Africa and Swiss Chair in Global Environmental Health (SARChI), funded by the South African National Research Foundation and the Swiss State Secretariat for Education, Research, and Innovation. O.O.A. is a recipient of a Swiss Government Excellence Scholarship. en_US
dc.description.uri https://www.elsevier.com/locate/envpol en_US
dc.identifier.citation Arowosegbe, O.O., Röösli, M., Künzli, N. et al. 2022, Ensemble averaging using remote sensing data to model spatiotemporal PM10 concentrations in sparsely monitored South Africa', Environmental Pollution, vol. 310, art. 119883, pp. 1-10, doi : 10.1016/j.envpol.2022.119883. en_US
dc.identifier.issn 0269-7491 (print)
dc.identifier.issn 1873-6424 (online)
dc.identifier.other 10.1016/j.envpol.2022.119883
dc.identifier.uri http://hdl.handle.net/2263/91120
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). en_US
dc.subject Ensemble averaging en_US
dc.subject Particulate matter (PM2.5) en_US
dc.subject Satellite observations en_US
dc.subject Machine learning en_US
dc.subject SDG-11: Sustainable cities and communities en_US
dc.title Ensemble averaging using remote sensing data to model spatiotemporal PM10 concentrations in sparsely monitored South Africa en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record