dc.contributor.author |
Ndwandwe, Bongekile K.
|
|
dc.contributor.author |
Malinga, Soraya P.
|
|
dc.contributor.author |
Kayitesi, Eugenie
|
|
dc.contributor.author |
Dlamini, Bhekisisa C.
|
|
dc.date.accessioned |
2023-05-10T10:05:18Z |
|
dc.date.available |
2023-05-10T10:05:18Z |
|
dc.date.issued |
2022-10 |
|
dc.description.abstract |
This work developed an active selenium nanoparticles-based potato starch film. The incorporation of selenium nanoparticles (SeNPs) improved the microstructure, physical and biological properties of the nanocomposite film. Scanning electron microscopy (SEM) showed a slight increase in surface roughness and heterogeneity of nanocomposite film. Addition of SeNPs resulted in an improvement in film thickness and density from 0.02 ± 0.01 to 0.04 ± 0.00 mm and 1.01 ± 0.12 to 1.31 ± 0.03 g cm−3, respectively, while water content, film solubility, swelling degree as well as water vapour transmission rate decreased. Integration of SeNPs into potato starch film caused a significant change (P < 0.05) of colour to red (a*) and yellow (b*). The tensile strength also improved with addition of SeNPs from 3.42 to 9.86 MPa. The presence of SeNPs in the potato starch film enhanced its antioxidant and antimicrobial activity. The overall migration and specific migration were within acceptable levels as stipulated in the EU regulations. The findings of this study present an alternative biodegradable biopolymer material that can be used as active food packaging material in replacement of nonbiodegradable synthetic polymer material. |
en_US |
dc.description.department |
Consumer Science |
en_US |
dc.description.department |
Food Science |
en_US |
dc.description.librarian |
hj2023 |
en_US |
dc.description.sponsorship |
Centre for Nanomaterials Science Research;
DST-NRF Centre of Excellence - Smart Foods;
Thuthuka National Research Foundation;
University of Johannesburg;
Water Research Commission. |
en_US |
dc.description.uri |
https://onlinelibrary.wiley.com/journal/13652621 |
en_US |
dc.identifier.citation |
Ndwandwe, B.K., Malinga, S.P., Kayitesi, E. & Dlamini, B.C. 2022, 'Selenium nanoparticles–enhanced potato starch film for active food packaging application', International Journal of Food Science and Technology, vol. 57, no. 10, pp. 6512-6521, doi : 10.1111/ijfs.15990. |
en_US |
dc.identifier.issn |
0950-5423 (print) |
|
dc.identifier.issn |
1365-2621 (online) |
|
dc.identifier.other |
10.1111/ijfs.15990 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/90608 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Wiley |
en_US |
dc.rights |
© 2022 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd on behalf of Institute of Food, Science and Technology (IFSTTF).
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License. |
en_US |
dc.subject |
Selenium nanoparticles (SeNPs) |
en_US |
dc.subject |
Nanocomposite film |
en_US |
dc.subject |
Antioxidant activity |
en_US |
dc.subject |
Antimicrobial activity |
en_US |
dc.subject |
Active food packaging |
en_US |
dc.title |
Selenium nanoparticles–enhanced potato starch film for active food packaging application |
en_US |
dc.type |
Article |
en_US |