dc.contributor.author |
Dukuza, Kenneth
|
|
dc.date.accessioned |
2023-05-05T07:04:02Z |
|
dc.date.available |
2023-05-05T07:04:02Z |
|
dc.date.issued |
2022-06 |
|
dc.description.abstract |
In this paper, we construct and analyse a discrete cancer mathematical model. Essential dynamic properties such as positivity and boundedness of solutions are discussed. Using the Lyapunov stability theorem, we prove that one of the tumor-free equilibria is globally asymptotically stable. Furthermore, the discrete model exhibits chaos for certain parameter values and this is supported by the existence of a positive Lyapunov exponent. Numerical simulations are performed to demonstrate our analytical results. |
en_US |
dc.description.department |
Mathematics and Applied Mathematics |
en_US |
dc.description.librarian |
hj2023 |
en_US |
dc.description.uri |
https://lhscientificpublishing.com/Journals/JAND-Default.aspx |
en_US |
dc.identifier.citation |
Dukuza, K. 2022, 'Chaos in a discrete cancer model', Journal of Applied Nonlinear Dynamics, vol. 11, no. 2, pp. 297-308, doi : 10.5890/JAND.2022.06.003. |
en_US |
dc.identifier.issn |
2164-6457 (print) |
|
dc.identifier.issn |
2164-6473 (online) |
|
dc.identifier.other |
10.5890/JAND.2022.06.003 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/90560 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
L&H Scientific Publishing |
en_US |
dc.rights |
© 2022 L&H Scientific Publishing, LLC. All rights reserved. |
en_US |
dc.subject |
Cancer model |
en_US |
dc.subject |
Lyapunov exponents |
en_US |
dc.subject |
Lyapunov stability theorem |
en_US |
dc.subject |
Nonstandard finite difference method |
en_US |
dc.title |
Chaos in a discrete cancer model |
en_US |
dc.type |
Postprint Article |
en_US |