Chaos in a discrete cancer model

Show simple item record

dc.contributor.author Dukuza, Kenneth
dc.date.accessioned 2023-05-05T07:04:02Z
dc.date.available 2023-05-05T07:04:02Z
dc.date.issued 2022-06
dc.description.abstract In this paper, we construct and analyse a discrete cancer mathematical model. Essential dynamic properties such as positivity and boundedness of solutions are discussed. Using the Lyapunov stability theorem, we prove that one of the tumor-free equilibria is globally asymptotically stable. Furthermore, the discrete model exhibits chaos for certain parameter values and this is supported by the existence of a positive Lyapunov exponent. Numerical simulations are performed to demonstrate our analytical results. en_US
dc.description.department Mathematics and Applied Mathematics en_US
dc.description.librarian hj2023 en_US
dc.description.uri https://lhscientificpublishing.com/Journals/JAND-Default.aspx en_US
dc.identifier.citation Dukuza, K. 2022, 'Chaos in a discrete cancer model', Journal of Applied Nonlinear Dynamics, vol. 11, no. 2, pp. 297-308, doi : 10.5890/JAND.2022.06.003. en_US
dc.identifier.issn 2164-6457 (print)
dc.identifier.issn 2164-6473 (online)
dc.identifier.other 10.5890/JAND.2022.06.003
dc.identifier.uri http://hdl.handle.net/2263/90560
dc.language.iso en en_US
dc.publisher L&H Scientific Publishing en_US
dc.rights © 2022 L&H Scientific Publishing, LLC. All rights reserved. en_US
dc.subject Cancer model en_US
dc.subject Lyapunov exponents en_US
dc.subject Lyapunov stability theorem en_US
dc.subject Nonstandard finite difference method en_US
dc.title Chaos in a discrete cancer model en_US
dc.type Postprint Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record