dc.contributor.author |
Saleem, Naeem
|
|
dc.contributor.author |
Abbas, Mujahid
|
|
dc.contributor.author |
Farooq, Sadia
|
|
dc.date.accessioned |
2023-03-08T05:08:48Z |
|
dc.date.available |
2023-03-08T05:08:48Z |
|
dc.date.issued |
2022-06 |
|
dc.description.abstract |
In this paper we define a new class of mappings called (θ, α+)- proximal admissible contractions and obtain a unique best proximity point for such mappings in the setting of complete generalized metric space. Our result is an extension of comparable results in the existing literature. Some examples are presented to support the results proved herein |
en_US |
dc.description.department |
Mathematics and Applied Mathematics |
en_US |
dc.description.librarian |
am2023 |
en_US |
dc.description.uri |
http://thaijmath.in.cmu.ac.th |
en_US |
dc.identifier.citation |
Saleem, N., Abbas, M., Farooq, S. 2022, 'Best proximity point results in generalized metric spaces', Thai Journal of Mathematics, vol. 20, no. 2, pp. 589-603. |
en_US |
dc.identifier.issn |
1686-0209 |
|
dc.identifier.uri |
https://repository.up.ac.za/handle/2263/90015 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Mathematical Association of Thailand |
en_US |
dc.rights |
© 2022 by the Mathematical Association of Thailand. |
en_US |
dc.subject |
Generalized metric space |
en_US |
dc.subject |
Proximal + admissible |
en_US |
dc.subject |
Best proximity point |
en_US |
dc.subject |
(θ, α+)−proximal admissible contraction |
en_US |
dc.title |
Best proximity point results in generalized metric spaces |
en_US |
dc.type |
Article |
en_US |