dc.contributor.author |
Bisschoff, Rudolph
|
|
dc.contributor.author |
Grobbelaar, Schalk
|
|
dc.date.accessioned |
2023-02-22T07:56:47Z |
|
dc.date.available |
2023-02-22T07:56:47Z |
|
dc.date.issued |
2022-11 |
|
dc.description |
Presented at the 33rd annual conference
of the Southern African Institute for
Industrial Engineering, held from 3 to 5
October 2022 in Zimbali, South Africa. |
en_US |
dc.description.abstract |
The ability of organisations to collect and store vast amounts of data has
become increasingly more accessible and affordable in recent decades
thanks to the advancement of Industry 4.0. This ability is an enabler of
data-driven decision-making (DDDM). However, converting data into
knowledge that can inform decision-makers has proven challenging for
many companies. The ability to perform DDDM effectively depends on a
combination of capabilities that encompass the technological,
analytical, and managerial aspects of a business. This research focuses
on the mining industry, and used a scoping literature review to identify
the different DDDM tools that are currently available, the potential
benefits of DDDM, the key enablers of DDDM, and the lessons learnt from
previous implementations. The objective of the paper is to assist mining
industry organisations in developing a DDDM implementation framework. |
en_US |
dc.description.abstract |
Die vermoë van organisasies om groot hoeveelhede data in te samel en
te berg het in die afgelope dekades toenemend meer toeganklik en
bekostigbaar geword danksy die vooruitgang van Industrie 4.0. Hierdie
vermoë is 'n bemiddelaar vir data-gedrewe besluitneming (DGB). Dit was
egter uitdagend vir baie maatskappye om data in kennis om te skakel vir
besluitnemers. Die vermoë om DGB effektief uit te voer hang af van 'n
kombinasie van vermoëns wat die tegnologiese, analitiese en
bestuursaspekte van 'n onderneming insluit. Hierdie navorsing het op die
mynbedryf gefokus en het 'n literatuuroorsig gebruik om die verskillende
DGB-instrumente wat tans beskikbaar is, die potensiële voordele van
DGB, die sleutel-instaatstellers van DGB, en die lesse geleer uit vorige
implementerings te identifiseer. Die doel van die artikel is om
mynbedryforganisasies te help met die ontwikkeling van 'n DGBimplementeringsraamwerk. |
en_US |
dc.description.department |
Graduate School of Technology Management (GSTM) |
en_US |
dc.description.librarian |
am2023 |
en_US |
dc.description.uri |
http://sajie.journals.ac.za |
en_US |
dc.identifier.citation |
Bisschoff, R.A.D.P. & Grobbelaar, S. 2022, 'Evaluation of data-driven decision-making implementation in the mining industry', South African Journal of Industrial Engineering, vol. 33, no. 3, pp. 218-232, doi : 10.7166/33-3-2799. |
en_US |
dc.identifier.issn |
1012-277X (print) |
|
dc.identifier.issn |
2224-7890 (online) |
|
dc.identifier.other |
10.7166/33-3-2799 |
|
dc.identifier.uri |
https://repository.up.ac.za/handle/2263/89749 |
|
dc.language.iso |
en |
en_US |
dc.publisher |
Southern African Institute for Industrial Engineering |
en_US |
dc.rights |
© 2022 Rudolph Bisschoff, Schalk Grobbelaar. This article is licensed under a Creative Commons Attribution License. |
en_US |
dc.subject |
Ability |
en_US |
dc.subject |
Organisations |
en_US |
dc.subject |
Data-driven decision-making (DDDM) |
en_US |
dc.subject |
Vermoe |
en_US |
dc.subject |
Organisasies |
en_US |
dc.subject |
Data-gedrewe besluitneming (DGB) |
en_US |
dc.title |
Evaluation of data-driven decision-making implementation in the mining industry |
en_US |
dc.type |
Article |
en_US |