Evaluation of data-driven decision-making implementation in the mining industry

Show simple item record

dc.contributor.author Bisschoff, Rudolph
dc.contributor.author Grobbelaar, Schalk
dc.date.accessioned 2023-02-22T07:56:47Z
dc.date.available 2023-02-22T07:56:47Z
dc.date.issued 2022-11
dc.description Presented at the 33rd annual conference of the Southern African Institute for Industrial Engineering, held from 3 to 5 October 2022 in Zimbali, South Africa. en_US
dc.description.abstract The ability of organisations to collect and store vast amounts of data has become increasingly more accessible and affordable in recent decades thanks to the advancement of Industry 4.0. This ability is an enabler of data-driven decision-making (DDDM). However, converting data into knowledge that can inform decision-makers has proven challenging for many companies. The ability to perform DDDM effectively depends on a combination of capabilities that encompass the technological, analytical, and managerial aspects of a business. This research focuses on the mining industry, and used a scoping literature review to identify the different DDDM tools that are currently available, the potential benefits of DDDM, the key enablers of DDDM, and the lessons learnt from previous implementations. The objective of the paper is to assist mining industry organisations in developing a DDDM implementation framework. en_US
dc.description.abstract Die vermoë van organisasies om groot hoeveelhede data in te samel en te berg het in die afgelope dekades toenemend meer toeganklik en bekostigbaar geword danksy die vooruitgang van Industrie 4.0. Hierdie vermoë is 'n bemiddelaar vir data-gedrewe besluitneming (DGB). Dit was egter uitdagend vir baie maatskappye om data in kennis om te skakel vir besluitnemers. Die vermoë om DGB effektief uit te voer hang af van 'n kombinasie van vermoëns wat die tegnologiese, analitiese en bestuursaspekte van 'n onderneming insluit. Hierdie navorsing het op die mynbedryf gefokus en het 'n literatuuroorsig gebruik om die verskillende DGB-instrumente wat tans beskikbaar is, die potensiële voordele van DGB, die sleutel-instaatstellers van DGB, en die lesse geleer uit vorige implementerings te identifiseer. Die doel van die artikel is om mynbedryforganisasies te help met die ontwikkeling van 'n DGBimplementeringsraamwerk. en_US
dc.description.department Graduate School of Technology Management (GSTM) en_US
dc.description.librarian am2023 en_US
dc.description.uri http://sajie.journals.ac.za en_US
dc.identifier.citation Bisschoff, R.A.D.P. & Grobbelaar, S. 2022, 'Evaluation of data-driven decision-making implementation in the mining industry', South African Journal of Industrial Engineering, vol. 33, no. 3, pp. 218-232, doi : 10.7166/33-3-2799. en_US
dc.identifier.issn 1012-277X (print)
dc.identifier.issn 2224-7890 (online)
dc.identifier.other 10.7166/33-3-2799
dc.identifier.uri https://repository.up.ac.za/handle/2263/89749
dc.language.iso en en_US
dc.publisher Southern African Institute for Industrial Engineering en_US
dc.rights © 2022 Rudolph Bisschoff, Schalk Grobbelaar. This article is licensed under a Creative Commons Attribution License. en_US
dc.subject Ability en_US
dc.subject Organisations en_US
dc.subject Data-driven decision-making (DDDM) en_US
dc.subject Vermoe en_US
dc.subject Organisasies en_US
dc.subject Data-gedrewe besluitneming (DGB) en_US
dc.title Evaluation of data-driven decision-making implementation in the mining industry en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record