We are excited to announce that the repository will soon undergo an upgrade, featuring a new look and feel along with several enhanced features to improve your experience. Please be on the lookout for further updates and announcements regarding the launch date. We appreciate your support and look forward to unveiling the improved platform soon.
dc.contributor.author | Ahmadpour, Ehsan![]() |
|
dc.contributor.author | Beshir Ahmed, Muktar![]() |
|
dc.contributor.author | Akalu, Temesgen Yihunie![]() |
|
dc.contributor.author | Al- Aly, Ziyad![]() |
|
dc.contributor.author | Alanezi, Fahad Mashhour![]() |
|
dc.contributor.author | Alanzi, Turki M.![]() |
|
dc.contributor.author | Alipour, Vahid![]() |
|
dc.contributor.author | Andrei, Catalina Liliana![]() |
|
dc.contributor.author | Ansari, Fereshteh![]() |
|
dc.contributor.author | Ansha, Mustafa Geleto![]() |
|
dc.contributor.author | Anvari, Davood![]() |
|
dc.contributor.author | Appiah, Seth Christopher Yaw![]() |
|
dc.contributor.author | Arabloo, Jalal![]() |
|
dc.contributor.author | Arnold, Benjamin F.![]() |
|
dc.contributor.author | Ausloos, Marcel![]() |
|
dc.contributor.author | Ayanore, Martin Amogre![]() |
|
dc.contributor.author | Baig, Atif Amin![]() |
|
dc.contributor.author | Banach, Maciej![]() |
|
dc.contributor.author | Barac, Aleksandra![]() |
|
dc.contributor.author | Barnighausen, Till Winfried![]() |
|
dc.contributor.author | Bayati, Mohsen![]() |
|
dc.contributor.author | Bhattacharyya, Krittika![]() |
|
dc.contributor.author | Bhutta, Zulfiqar A.![]() |
|
dc.contributor.author | Bibi, Sadia![]() |
|
dc.contributor.author | Bijani, Ali![]() |
|
dc.contributor.author | Bohlouli, Somayeh![]() |
|
dc.contributor.author | Bohluli, Mahdi![]() |
|
dc.contributor.author | Brady, Oliver J.![]() |
|
dc.contributor.author | Bragazzi, Nicola Luigi![]() |
|
dc.contributor.author | Butt, Zahid A.![]() |
|
dc.contributor.author | Carvalho, Felix![]() |
|
dc.contributor.author | Chatterjee, Souranshu![]() |
|
dc.contributor.author | Chattu, Vijay Kumar![]() |
|
dc.contributor.author | Chattu, Soosanna Kumary![]() |
|
dc.contributor.author | Cormier, Natalie Maria![]() |
|
dc.contributor.author | Dahlawi, Saad M.A.![]() |
|
dc.contributor.author | Damiani, Giovanni![]() |
|
dc.contributor.author | Daoud, Farah![]() |
|
dc.contributor.author | Darwesh, Aso Mohammad![]() |
|
dc.contributor.author | Daryani, Ahmad![]() |
|
dc.contributor.author | Deribe, Kebede![]() |
|
dc.contributor.author | Dharmaratne, Samath Dhamminda![]() |
|
dc.contributor.author | Diaz, Daniel![]() |
|
dc.contributor.author | Do, Hoa Thi![]() |
|
dc.contributor.author | Zaki, Maysaa El Sayed![]() |
|
dc.contributor.author | Tantawi, Maha El![]() |
|
dc.contributor.author | Elemineh, Demelash Abewa![]() |
|
dc.contributor.author | Faraj, Anwar![]() |
|
dc.contributor.author | Harandi, Majid Fasihi![]() |
|
dc.contributor.author | Fatahi, Yousef![]() |
|
dc.contributor.author | Feigin, Valery L.![]() |
|
dc.contributor.author | Fernandes, Eduarda![]() |
|
dc.contributor.author | Foigt, Nataliya A.![]() |
|
dc.contributor.author | Foroutan, Masoud![]() |
|
dc.contributor.author | Franklin, Richard Charles![]() |
|
dc.contributor.author | Gubari, Mohammed Ibrahim Mohialdeen![]() |
|
dc.contributor.author | Guido, Davide![]() |
|
dc.contributor.author | Guo, Yuming![]() |
|
dc.contributor.author | Haj-Mirzaian, Arvin![]() |
|
dc.contributor.author | Abdullah, Kanaan Hamagharib![]() |
|
dc.contributor.author | Hamidi, Samer![]() |
|
dc.contributor.author | Herteliu, Claudiu![]() |
|
dc.contributor.author | De Hidru, Hagos Degefa![]() |
|
dc.contributor.author | Higazi, Tarig B.![]() |
|
dc.contributor.author | Hossain, Naznin![]() |
|
dc.contributor.author | Hosseinzadeh, Mehdi![]() |
|
dc.contributor.author | Househ, Mowafa![]() |
|
dc.contributor.author | Ilesanmi, Olayinka Stephen![]() |
|
dc.contributor.author | Ilic, Milena D.![]() |
|
dc.contributor.author | Ilic, Irena M.![]() |
|
dc.contributor.author | Iqbal, Usman![]() |
|
dc.contributor.author | Irvani, Seyed Sina Naghibi![]() |
|
dc.contributor.author | Jha, Ravi Prakash![]() |
|
dc.contributor.author | Joukar, Farahnaz![]() |
|
dc.contributor.author | Jozwiak, Jacek Jerzy![]() |
|
dc.contributor.author | Kabir, Zubair![]() |
|
dc.contributor.author | Kalankesh, Leila R.![]() |
|
dc.contributor.author | Kalhor, Rohollah![]() |
|
dc.contributor.author | Matin, Behzad Karami![]() |
|
dc.contributor.author | Karimi, Salah Eddin![]() |
|
dc.contributor.author | Kasaeian, Amir![]() |
|
dc.contributor.author | Kavetskyy, Taras![]() |
|
dc.contributor.author | Kayode, Gbenga A.![]() |
|
dc.contributor.author | Karyani, Ali Kazemi![]() |
|
dc.contributor.author | Kelbore, Abraham Getachew![]() |
|
dc.contributor.author | Keramati, Maryam![]() |
|
dc.contributor.author | Khalilov, Rovshan![]() |
|
dc.contributor.author | Khan, Ejaz Ahmad![]() |
|
dc.contributor.author | Khan, Md Nuruzzaman Nuruzzaman![]() |
|
dc.contributor.author | Khatab, Khaled![]() |
|
dc.contributor.author | Khater, Mona M.![]() |
|
dc.contributor.author | Kianipour, Neda![]() |
|
dc.contributor.author | Kibret, Kelemu Tilahun![]() |
|
dc.contributor.author | Kim, Yun Jin![]() |
|
dc.contributor.author | Kosen, Soewarta![]() |
|
dc.contributor.author | Krohn, Kris J.![]() |
|
dc.contributor.author | Kusuma, Dian![]() |
|
dc.contributor.author | La Vecchia, Carlo![]() |
|
dc.contributor.author | Lansingh, Charles![]() |
|
dc.contributor.author | Lee, Paul H.![]() |
|
dc.contributor.author | LeGrand, Kate E.![]() |
|
dc.contributor.author | Li, Shanshan![]() |
|
dc.contributor.author | Longbottom, Joshua![]() |
|
dc.contributor.author | Abd El Razek, Hassan Magdy![]() |
|
dc.contributor.author | Abd El Razek, Muhammed Magdy![]() |
|
dc.contributor.author | Maleki, Afshin![]() |
|
dc.contributor.author | Mamun, Abdullah A.![]() |
|
dc.contributor.author | Manafi, Ali![]() |
|
dc.contributor.author | Manafi, Navid![]() |
|
dc.contributor.author | Mansournia, Mohammad Ali![]() |
|
dc.contributor.author | Martins- Melo, Francisco Rogerlandio![]() |
|
dc.contributor.author | Mazidi, Mohsen![]() |
|
dc.contributor.author | McAlinden, Colm![]() |
|
dc.contributor.author | Meharie, Birhanu Geta![]() |
|
dc.contributor.author | Mendoza, Walter![]() |
|
dc.contributor.author | Mengesha, Endalkachew Worku![]() |
|
dc.contributor.author | Mengistu, Desalegn Tadese![]() |
|
dc.contributor.author | Mereta, Seid Tiku![]() |
|
dc.contributor.author | Mestrovic, Tomislav![]() |
|
dc.contributor.author | Miller, Ted R.![]() |
|
dc.contributor.author | Miri, Mohammad![]() |
|
dc.contributor.author | Moghadaszadeh, Masoud![]() |
|
dc.contributor.author | Mohammadian-Hafshejani, Abdollah![]() |
|
dc.contributor.author | Mohammadpourhodki, Reza![]() |
|
dc.contributor.author | Mohammed, Shafiu![]() |
|
dc.contributor.author | Mohammed, Salahuddin![]() |
|
dc.contributor.author | Moradi, Masoud![]() |
|
dc.contributor.author | Moradzadeh, Rahmatollah![]() |
|
dc.contributor.author | Moraga, Paula![]() |
|
dc.contributor.author | Mosser, Jonathan F.![]() |
|
dc.contributor.author | Naderi, Mehdi![]() |
|
dc.contributor.author | Nagarajan, Ahamarshan Jayaraman![]() |
|
dc.contributor.author | Naik, Gurudatta![]() |
|
dc.contributor.author | Negoi, Ionut![]() |
|
dc.contributor.author | Nguyen, Cuong Tat![]() |
|
dc.contributor.author | Nguyen, Huong Lan Thi![]() |
|
dc.contributor.author | Nguyen, Trang Huyen![]() |
|
dc.contributor.author | Nikbakhsh, Rajan![]() |
|
dc.contributor.author | Oancea, Bogdan![]() |
|
dc.contributor.author | Olagunju, Tinuke O.![]() |
|
dc.contributor.author | Olagunju, Andrew T.![]() |
|
dc.contributor.author | Bali, Ahmed Omar![]() |
|
dc.contributor.author | Onwujekwe, Obinna E.![]() |
|
dc.contributor.author | Pana, Adrian![]() |
|
dc.contributor.author | Pourjafar, Hadi![]() |
|
dc.contributor.author | Rahim, Fakher![]() |
|
dc.contributor.author | Rahman, Mohammad Hifz Ur![]() |
|
dc.contributor.author | Rathi, Priya![]() |
|
dc.contributor.author | Rawaf, Salman![]() |
|
dc.contributor.author | Rawaf, David Laith![]() |
|
dc.contributor.author | Rawassizadeh, Reza![]() |
|
dc.contributor.author | Resnikoff, Serge![]() |
|
dc.contributor.author | Reta, Melese Abate![]() |
|
dc.contributor.author | Rezapour, Aziz![]() |
|
dc.contributor.author | Rubagotti, Enrico![]() |
|
dc.contributor.author | Rubino, Salvatore![]() |
|
dc.contributor.author | Sadeghi, Ehsan![]() |
|
dc.contributor.author | Saghafipour, Abedin![]() |
|
dc.contributor.author | Sajadi, S. Mohammad![]() |
|
dc.date.accessioned | 2022-12-14T04:46:33Z | |
dc.date.available | 2022-12-14T04:46:33Z | |
dc.date.issued | 2021-07-28 | |
dc.description | SUPPORTING INFORMATION : FIGURE S1. Data coverage by year. Here we visualise the volume of data used in the analysis by country and year. Larger circles indicate more data inputs. ‘NA’ indicates records for which no year was reported (eg, ‘pre-2000’). https://doi.org/10.1371/journal.pntd.0008824.s001 | en_US |
dc.description | FIGURE S2. Illustration of covariate values for year 2000. Maps were produced using ArcGIS Desktop 10.6. https://doi.org/10.1371/journal.pntd.0008824.s002 | en_US |
dc.description | FIGURE S3. Environmental suitability of onchocerciasis including locations that have received MDA for which no pre-intervention data are available. This plot shows suitability predictions from green (low = 0%) to pink (high = 100%), representing those areas where environmental conditions are most similar to prior pathogen detections. Countries in grey with hatch marks were excluded from the analysis based on a review of national endemicity status. Areas in grey only represent locations masked due to sparse population. Maps were produced using ArcGIS Desktop 10.6 and shapefiles to visualize administrative units are available at https://espen.afro.who.int/tools-resources/cartography-database. https://doi.org/10.1371/journal.pntd.0008824.s003 | en_US |
dc.description | FIGURE S4. Environmental suitability prediction uncertainty including locations that have received MDA for which no pre-intervention data are available. This plot shows uncertainty associated with environmental suitability predictions colored from blue to red (least to most uncertain). Countries in grey with hatch marks were excluded from the analysis based on a review of national endemicity status. Areas in grey only represent locations masked due to sparse population. Maps were produced using ArcGIS Desktop 10.6 and shapefiles to visualize administrative units are available at https://espen.afro.who.int/tools-resources/cartography-database. https://doi.org/10.1371/journal.pntd.0008824.s004 | en_US |
dc.description | FIGURE S5. Environmental suitability of onchocerciasis excluding morbidity data. This plot shows suitability predictions from green (low = 0%) to pink (high = 100%), representing those areas where environmental conditions are most similar to prior pathogen detections. Countries in grey with hatch marks were excluded from the analysis based on a review of national endemicity status. Areas in grey only represent locations masked due to sparse population. Maps were produced using ArcGIS Desktop 10.6 and shapefiles to visualize administrative units are available at https://espen.afro.who.int/tools-resources/cartography-database. https://doi.org/10.1371/journal.pntd.0008824.s005 | en_US |
dc.description | FIGURE S6. Environmental suitability prediction uncertainty excluding morbidity data. This plot shows uncertainty associated with environmental suitability predictions colored from blue to red (least to most uncertain). Countries in grey with hatch marks were excluded from the analysis based on a review of national endemicity status. Areas in grey only represent locations masked due to sparse population. https://doi.org/10.1371/journal.pntd.0008824.s006 | en_US |
dc.description | FIGURE S7. Covariate Effect Curves for all onchocerciasis occurrences (measures of infection prevalence and disability). On the right set of axes we show the frequency density of the occurrences taking covariate values over 20 bins of the horizontal axis. The left set of axes shows the effect of each on the model, where the mean effect is plotted on the black line and its uncertainty is represented by the upper and lower confidence interval bounds plotted in dark grey. The figures show the fit per covariate relative to the data that correspond to specific values of the covariate. https://doi.org/10.1371/journal.pntd.0008824.s007 | en_US |
dc.description | FIGURE S8. Covariate Effect Curves for all onchocerciasis occurrences (measures of infection prevalence and disability). On the right set of axes we show the frequency density of the occurrences taking covariate values over 20 bins of the horizontal axis. The left set of axes shows the effect of each on the model, where the mean effect is plotted on the black line and its uncertainty is represented by the upper and lower confidence interval bounds plotted in dark grey. https://doi.org/10.1371/journal.pntd.0008824.s008 | en_US |
dc.description | FIGURE S9. ROC analysis for threshold. Results of the area under the receiver operating characteristic (ROC) curve analysis are presented below, with false positive rate (FPR) on the x-axis and true positive rate (TPR) on the y-axis. The red dot on the curve represents the location on the curve that corresponds to a threshold that most closely agreed with the input data. For each of the 100 BRT models, we estimated the optimal threshold that maximised agreement between occurrence inputs (considered true positives) and the mean model predictions as 0·71. https://doi.org/10.1371/journal.pntd.0008824.s009 | en_US |
dc.description | TABLE S1. Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) checklist. https://doi.org/10.1371/journal.pntd.0008824.s010 | en_US |
dc.description | TABLE S2. Total number of occurrence data classified as point and polygon inputs by diagnostic. We present the total number of occurrence points extracted from the input data sources by diagnostic type. ‘Other diagnostics’ include: DEC Patch test; Knott’s Method (Mazotti Test); 2 types of LAMP; blood smears; and urine tests. https://doi.org/10.1371/journal.pntd.0008824.s011 | en_US |
dc.description | TABLE S3. Total number of occurrence data classified as point and polygon inputs by location. https://doi.org/10.1371/journal.pntd.0008824.s012 | en_US |
dc.description | TABLE S4. Covariate information. https://doi.org/10.1371/journal.pntd.0008824.s013 | en_US |
dc.description | TEXT S1. Details outlining construction of occurrence dataset. https://doi.org/10.1371/journal.pntd.0008824.s014 | en_US |
dc.description | TEXT S2. Covariate rationale. https://doi.org/10.1371/journal.pntd.0008824.s015 | en_US |
dc.description | TEXT S3. Boosted regression tree methodology additional details. https://doi.org/10.1371/journal.pntd.0008824.s016 | en_US |
dc.description | APPENDIX S1. Country-level maps and data results. Maps were produced using ArcGIS Desktop 10.6 and shapefiles to visualize administrative units are available at https://espen.afro.who.int/tools-resources/cartography-database. https://doi.org/10.1371/journal.pntd.0008824.s017 | en_US |
dc.description.abstract | Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 071 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 502% exceed this threshold for suitability in at least one 5 × 5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify. | en_US |
dc.description.department | Medical Microbiology | en_US |
dc.description.librarian | am2022 | en_US |
dc.description.sponsorship | This work was primarily supported by a grant from the Bill & Melinda Gates Foundation OPP1132415 (SIH). Financial support from the Neglected Tropical Disease Modelling Consortium (https://www.ntdmodelling.org/), which is funded by the Bill & Melinda Gates Foundation (grants No. OPP1184344 and OPP1186851), and joint centre funding (grant No. MR/R015600/1) by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement which is also part of the EDCTP2 programme supported by the European Union (MGB). | en_US |
dc.description.sponsorship | The Neglected Tropical Disease Modelling Consortium which is funded by the Bill & Melinda Gates Foundation, the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement which is also part of the EDCTP2 programme supported by the European Union (MGB). | en_US |
dc.description.uri | http://www.plosNTDS.org | en_US |
dc.identifier.citation | Cromwell, E.A., Osborne, J.C.P., Unnasch, T.R., Basáñez, M.-G., Gass, K.M., Barbre, K.A., et al. (2021) Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning. PLoS Neglected Tropical Diseases 15(7): e0008824. https://DOI.org/10.1371/journal.pntd.0008824. | en_US |
dc.identifier.issn | 1935-2735 (print) | |
dc.identifier.issn | 1935-2727 (online) | |
dc.identifier.other | 10.1371/journal.pntd.0008824 | |
dc.identifier.uri | https://repository.up.ac.za/handle/2263/88775 | |
dc.language.iso | en | en_US |
dc.publisher | Public Library of Science | en_US |
dc.rights | The work is made available under the Creative Commons CC0. | en_US |
dc.subject | Foci | en_US |
dc.subject | Africa | en_US |
dc.subject | Transmission | en_US |
dc.subject | Mass drug administration (MDA) | en_US |
dc.subject | Ivermectin | en_US |
dc.subject | Implementation units (IUs) | en_US |
dc.subject | Elimination of transmission | en_US |
dc.subject | Receiver operating characteristic (ROC) | en_US |
dc.title | Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning | en_US |
dc.type | Article | en_US |