Abstract:
Fast initial response (FIR) features are generally used to improve the sensitivity of memory-type control charts by shrinking time-varying control limits in the earlier stage of the monitoring regime. This paper incorporates FIR features to increase the sensitivity of the homogeneously weighted moving average (HWMA) monitoring schemes with and without measurement errors under constant as well as linearly increasing variance scenarios. The robustness and the performance of the HWMA monitoring schemes are investigated in terms of numerous run-length properties assuming that the underlying process parameters are known and unknown. It is found that the FIR features improves the performance of the HWMA monitoring scheme as compared to the standard no FIR feature HWMA scheme, and at the same time, it is observed that the simultaneous use of a recently proposed FIR feature and multiple measurements significantly reduces the negative effect of measurement errors. An illustrative example on the volume of milk in bottles is used to demonstrate a real-life application.