Some notes on orthogonally additive polynomials

Show simple item record

dc.contributor.author Schwanke, Christopher Michael
dc.date.accessioned 2022-03-24T05:09:57Z
dc.date.issued 2022
dc.description.abstract We provide two new characterizations of bounded orthogonally additive polynomials from a uniformly complete vector lattice into a convex bornological space using separately two polynomial identities of Kusraeva involving the root mean power and the geometric mean. Furthermore, it is shown that a polynomial on a vector lattice is orthogonally additive whenever it is orthogonally additive on the positive cone. These results improve recent characterizations of bounded orthogonally additive polynomials by G. Buskes and the author. en_ZA
dc.description.department Mathematics and Applied Mathematics en_ZA
dc.description.embargo 2022-07-20
dc.description.librarian hj2022 en_ZA
dc.description.uri https://www.tandfonline.com/loi/tqma20 en_ZA
dc.identifier.citation C. Schwanke (2022): Some notes on orthogonally additive polynomials, Quaestiones Mathematicae, 45:10, 1559-1565, DOI: 10.2989/16073606.2021.1953631. en_ZA
dc.identifier.issn 1607-3606 (print)
dc.identifier.issn 1727-933X (online)
dc.identifier.other 10.2989/16073606.2021.1953631
dc.identifier.uri http://hdl.handle.net/2263/84582
dc.language.iso en en_ZA
dc.publisher Taylor and Francis en_ZA
dc.rights © 2021 NISC (Pty) Ltd. This is an electronic version of an article published in Quaestiones Mathematicae, vol. 45, no. 10, pp. 1559-1565, 2022. doi : 10.2989/16073606.2021.1953631. Quaestiones Mathematicae is available online at: https://www.tandfonline.com/loi/tqma20. en_ZA
dc.subject Vector lattice en_ZA
dc.subject Orthogonally additive polynomial en_ZA
dc.subject Geometric mean en_ZA
dc.subject Root mean power en_ZA
dc.title Some notes on orthogonally additive polynomials en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record