On the numerical solution of Fisher's and FitzHugh-Nagumo equations using some nite di erence methods

Show simple item record

dc.contributor.advisor Appadu, A. Rao
dc.contributor.coadvisor Banasiak, Jacek
dc.contributor.postgraduate Agbavon, Koffi Messan
dc.date.accessioned 2022-02-11T13:04:23Z
dc.date.available 2022-02-11T13:04:23Z
dc.date.created 2020
dc.date.issued 2020
dc.description Thesis (PhD (Mathematical Sciences))--University of Pretoria, 2020. en_ZA
dc.description.abstract In this thesis, we make use of numerical schemes in order to solve Fisher’s and FitzHugh-Nagumo equations with specified initial conditions. The thesis is made up of six chapters. Chapter 1 gives some literatures on partial differential equations and chapter 2 provides some concepts on finite difference methods, nonstandard finite difference methods and their proper-ties, reaction-diffusion equations and singularly perturbed equations. In chapter 3, we obtain the numerical solution of Fisher’s equation when the coefficient of diffu-sion term is much smaller than the coefficient of reaction (Li et al., 1998). Li et al. (1998) used the Moving Mesh Partial Differential Equation (MMPDE) method to solve a scaled Fisher’s equation with coefficient of reaction being 104 and coefficient of diffusion equal to one and the initial condition consisted of an exponential function. The problem considered is quite challeng-ing and the results obtained by Li et al. (1998) are not accurate due to the fact that MMPDE is based on familiar arc-length or curvature monitor function. Qiu and Sloan (1998) constructed a suitable monitor function called modified monitor function and used it with the Moving Mesh Differential Algebraic Equation (MMDAE) method in order to solve the same problem as Li et al. (1998) and better result were obtained. However, each problem has its own choice of monitor function which makes the choice of the monitor function an open question. We use the Forward in Time Central Space (FTCS) scheme and the Nonstandard Finite Difference (NSFD) to solve the scaled Fisher’s equation and we find that the temporal step size must be very small in order to obtain accurate results and comparable to Qiu and Sloan (1998). This causes the computational time to be long if the domain is large. We use two techniques to modify these two schemes either by introducing artificial viscosity or using the approach of Ruxun et al. (1999). These techniques are efficient and give accurate results with a larger temporal step size. We prove that these four methods are consistent with the partial differential equation and we also obtain the region of stability. Chapter 4 is an improvement and extension of the work from Namjoo and Zibaei (2018) whereby the standard FitzHugh-Nagumo equation with specified initial and boundary conditions is solved. Namjoo and Zibaei (2018) constructed two versions of nonstandard finite difference (NSFD1, NSFD2) and also derived two schemes (one explicit and the other implicit) constructed from the exact solution. However, they presented results using the nonstandard finite difference schemes only. We showed that one of the nonstandard finite difference schemes (NSFD1) has convergence issues and we obtain an improvement for NSFD1 which we call NSFD3. We per-form a stability analysis of the schemes constructed from the exact solution and found that the explicit scheme is not stable for this problem. We study some properties of the five methods (NSFD1, NSFD2, NSFD3, two schemes obtained using the exact solution) such as stability, positivity and boundedness. The performance of the five methods is compared by computing L1, L∞ errors and the rate of convergence for two values of the threshold of Affect effect, γ namely; 0.001 and 0.5 for small and large spatial domains at time, T = 1.0. Tests on rate of convergence are important here as we are dealing with nonlinear partial differential equations and therefore the Lax-Equivalence theorem cannot be used. In chapter 5, we consider FitzHugh-Nagumo equation with the parameter β referred to as in-trinsic growth rate. We chose a numerical experiment which is quite challenging for simulation due to shock-like profiles. We construct four versions of nonstandard finite difference schemes and compared the performance by computing L1, L∞ errors, rate of convergence with respect to time and CPU time at given time, T = 0.5 using three values of the intrinsic growth rate, β namely; β = 0.5, 1.0, 2.0. Chapter 6 highlights the salient features of this work. en_ZA
dc.description.availability Unrestricted en_ZA
dc.description.degree PhD (Mathematical Sciences) en_ZA
dc.description.department Mathematics and Applied Mathematics en_ZA
dc.description.sponsorship South African DST/NRF SARChI en_ZA
dc.identifier.citation * en_ZA
dc.identifier.other A2020 en_ZA
dc.identifier.uri http://hdl.handle.net/2263/83826
dc.language.iso en en_ZA
dc.publisher University of Pretoria
dc.rights © 2021 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subject UCTD en_ZA
dc.subject Artificial viscosity en_ZA
dc.subject Partial Difference Equation en_ZA
dc.subject Errors en_ZA
dc.title On the numerical solution of Fisher's and FitzHugh-Nagumo equations using some nite di erence methods en_ZA
dc.type Thesis en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record