Nonlinear regression in dynamic environments using particle swarm optimization

Show simple item record

dc.contributor.author Kuranga, Cry
dc.contributor.author Pillay, Nelishia
dc.date.accessioned 2021-09-16T09:00:09Z
dc.date.available 2021-09-16T09:00:09Z
dc.date.issued 2020-11
dc.description.abstract This paper extends a PSO-based nonlinear regression technique to dynamic environments whereby the induced model dynamically adjusts when an environmental change is detected. As such, this work hybridizes a PSO designed for dynamic environments with a least-squares approximation technique to induce structurally optimal nonlinear regression models. The proposed model was evaluated experimentally and compared with the dynamic PSOs, namely multi-swarm, reinitialized, and charged PSOs, to optimize the model structure and the regression parameters in the dynamic environment. The obtained results show that the proposed model was adaptive to the changing environment to yield structurally optimal models which consequently, outperformed the dynamic PSOs for the given datasets. en_ZA
dc.description.department Computer Science en_ZA
dc.description.librarian hj2021 en_ZA
dc.description.uri http://link.springer.combookseries/558 en_ZA
dc.identifier.citation Kuranga C., Pillay N. (2020) Nonlinear Regression in Dynamic Environments Using Particle Swarm Optimization. In: Martín-Vide C., Vega-Rodríguez M.A., Yang MS. (eds) Theory and Practice of Natural Computing. TPNC 2020. Lecture Notes in Computer Science, vol 12494. Springer, Cham. https://doi.org/10.1007/978-3-030-63000-3_11. en_ZA
dc.identifier.isbn 978-3-030-63000-3 (online)
dc.identifier.isbn 978-3-030-62999-1 (print)
dc.identifier.issn 0302-9743 (print)
dc.identifier.issn 1611-3349 (online)
dc.identifier.other 10.1007/978-3-030-63000-3_11
dc.identifier.uri http://hdl.handle.net/2263/81875
dc.language.iso en en_ZA
dc.publisher Springer en_ZA
dc.rights © IFIP International Federation for Information Processing 2020. The original publication is available at : http://link.springer.combookseries/558. en_ZA
dc.subject Particle swarm optimization (PSO) en_ZA
dc.subject Dynamic PSO en_ZA
dc.subject Least-squares en_ZA
dc.subject Nonlinear regression en_ZA
dc.subject Dynamic environments en_ZA
dc.title Nonlinear regression in dynamic environments using particle swarm optimization en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record