Abstract:
In this study, a non-autonomous (temperature dependent) and autonomous (temperature independent) models for the transmission dynamics of malaria in a population are designed and rigorously analysed. The models are used to assess the impact of temperature changes on various control strategies. The autonomous model is shown to exhibit the phenomenon of backward bifurcation, where an asymptotically-stable disease-free equilibrium (DFE) co-exists with an asymptotically-stable endemic equilibrium when the associated reproduction number is less than unity. This phenomenon is shown to arise due to the presence of imperfect vaccines and disease-induced mortality rate. Thresh- old quantities (such as the basic o spring number, vaccination and host type reproduction numbers) and their interpretations for the models are presented. Conditions for local asymptotic stability of the disease-free solutions are computed. Sensitivity analysis using temperature data obtained from Kwazulu Natal Province of South Africa is used to assess the parameters that have the most influence on malaria transmission. The effect of various control strategies (bed nets, adulticides and vaccination) were assessed via numerical simulations.