Abstract:
In this paper, we consider simultaneous reconstruction of diffusion coefficient and initial state for a one-dimensional heat equation through boundary control and measurement. The boundary measurement is proposed to make the system approximately observable, and both the coefficient and initial state are shown to be identifiable by this measurement under a boundary switch on/off control. By a Dirichlet series representation for the observation, we can transform the problem into an inverse process of reconstruction of the spectrum and coefficients for the Dirichlet series in terms of observation. This happens to be the reconstruction of spectral data for an exponential sequence with measurement error, and it enables us to develop an algorithm based on the matrix pencil method in signal analysis. A theoretical error analysis for the algorithm concerning the coefficient reconstruction is carried out for the proposed method. The numerical simulations are presented to verify the proposed algorithm.