dc.contributor.author |
Olatinwo, Damilola D.
|
|
dc.contributor.author |
Abu-Mahfouz, Adnan Mohammed
|
|
dc.contributor.author |
Hancke, Gerhard P.
|
|
dc.date.accessioned |
2021-05-25T05:30:33Z |
|
dc.date.available |
2021-05-25T05:30:33Z |
|
dc.date.issued |
2021-03 |
|
dc.description.abstract |
Internet of things (IoT) is a concept that is currently gaining a lot of popularity as a result of its potential to be incorporated into many heterogeneous systems. Because of its diversity, integrating IoT is conceivable in almost all fields, including the healthcare sector. For instance, a promising technology in the healthcare sector known as wireless body area network (WBAN) could be integrated with the IoT to enhance its productivity. However, in order to guarantee the optimization of the operation of the healthcare applications facilitated by the WBAN-enabled IoT technology, there must be enough support from all the different protocol stack layers so as to satisfy the critical quality-of-service (QoS) requirements of the WBAN systems. Consequently, the medium access control (MAC) protocol has recently been gaining lots of attention in the area of WBANs due to its ability to manage and coordinate when a shared communication channel can be accessed. For the purpose of achieving efficient MAC protocols for WBAN-enabled IoT technology, this paper investigates some key MAC protocols that could be exploited in WBANs based on their characteristics, service specifications, technical issues such as energy wastage issues, and possible technical solutions were provided to enhance energy efficiency, channel utilization, data transmission rate, and dealy rate. Also, these MAC protocols were grouped and compared based on short- and long-range communication standards. Following this, future directions and open research issues are pointed out. |
en_ZA |
dc.description.department |
Electrical, Electronic and Computer Engineering |
en_ZA |
dc.description.librarian |
hj2021 |
en_ZA |
dc.description.sponsorship |
The Council for Scientific and Industrial Research, Pretoria, South Africa, through the Smart Networks collaboration initiative and IoT-Factory Program (Funded by the Department of Science and Innovation (DSI), South Africa). The APC was funded by the CSIR. |
en_ZA |
dc.description.uri |
https://jwcn-eurasipjournals.springeropen.com |
en_ZA |
dc.identifier.citation |
Olatinwo, D.D., Abu-Mahfouz, A.M. & Hancke, G.P. Towards achieving efficient MAC protocols for WBAN-enabled IoT technology: a review. EURASIP Journal on Wireless Communications and Networking 2021, 60 (2021). https://doi.org/10.1186/s13638-021-01919-1. |
en_ZA |
dc.identifier.issn |
1687-1472 (print) |
|
dc.identifier.issn |
1687-1499 (online) |
|
dc.identifier.other |
10.1186/s13638-021-01919-1 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/80023 |
|
dc.language.iso |
en |
en_ZA |
dc.publisher |
SpringerOpen |
en_ZA |
dc.rights |
© The Author(s). 2021 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License. |
en_ZA |
dc.subject |
Internet of things (IoT) |
en_ZA |
dc.subject |
Wireless body area network (WBAN) |
en_ZA |
dc.subject |
Quality of service (QoS) |
en_ZA |
dc.subject |
Medium access control (MAC) |
en_ZA |
dc.subject |
5G technology |
en_ZA |
dc.subject |
Energy efficiency |
en_ZA |
dc.subject |
Communication standards |
en_ZA |
dc.subject |
MAC protocols |
en_ZA |
dc.title |
Towards achieving efficient MAC protocols for WBAN-enabled IoT technology : a review |
en_ZA |
dc.type |
Article |
en_ZA |