Abstract:
Unique microstructured nickel ammonium phosphate Ni(NH4)2(PO3)4$4H2O and Ni(NH4)2(PO3)4$4H2O/GF
composite were successfully synthesized through the hydrothermal method with different graphene foam
(GF) mass loading of 30, 60 and 90 mg as a positive electrode for asymmetric supercapacitors. The crystal
structure, vibrational mode, texture and morphology of the samples were studied with X-ray diffraction
(XRD), Raman spectroscopy, Brunauer–Emmett–Teller (BET) surface area analysis and scanning electron
microscopy (SEM). The prepared materials were tested in both 3-and 2-electrode measurements using
6 M KOH electrolyte. The composite material Ni(NH4)2(PO3)4$4H2O/60 mg exhibited a remarkable
gravimetric capacity of 52 mA h g 1, higher than the 34 mA h g 1 obtained for the Ni(NH4)2(PO3)4$4H2O
pristine sample, both at 0.5 A g 1. For the fabrication of the asymmetric device, activated carbon from
pepper seed (ppAC) was used as a negative electrode while Ni(NH4)2(PO3)4$4H2O/60 mg GF was
adopted as the positive electrode. The Ni(NH4)2(PO3)4$4H2O/60 mg GF//ppAC asymmetric device
delivered a specific energy of 52 Wh kg 1 with an equivalent specific power of 861 W kg 1 at 1.0 A g 1
within a potential range of 0.0–1.5 V. Moreover, the asymmetric device displayed a capacity retention of
about 76% for over 10 000 cycles at a high specific current of 10.0 A g 1.