dc.contributor.author |
Pohlin, Friederike
|
|
dc.contributor.author |
Hofmeyr, Markus
|
|
dc.contributor.author |
Hooijberg, Emma Henriette
|
|
dc.contributor.author |
Blackhurst, Dee
|
|
dc.contributor.author |
Reuben, Mmadi
|
|
dc.contributor.author |
Cooper, Dave
|
|
dc.contributor.author |
Meyer, Leith Carl Rodney
|
|
dc.date.accessioned |
2021-03-10T14:03:48Z |
|
dc.date.available |
2021-03-10T14:03:48Z |
|
dc.date.issued |
2020-04 |
|
dc.description.abstract |
Capture and transport are part of translocation and expose animals to a variety of stressors that can lead to morbidity and mortality. We aimed to establish a better understanding of the physiologic responses to capture and transport in black (Diceros bicornis) and white (Ceratotherium simum) rhinoceroses in Southern Africa. Fourteen adult black rhinoceroses were transported 600 km by vehicle and 32 white rhinoceroses (24 adults and 8 juveniles) were transported 1,300 km by vehicle. The black rhinoceroses had been wild-caught and boma-adapted over 6 wk prior to the translocation and were only sedated to allow for loading into the transport crates. The white rhinoceroses originated from a game farm and were chemically immobilized from a helicopter and then loaded. Paired blood samples were collected from animals at loading (capture) and after transport and evaluated for changes in clinical chemistry analytes, acute phase reactants, and oxidative stress biomarkers. The Wilcoxon rank sum test was used to compare changes in measured analytes from capture and after transport. All rhinoceroses survived capture and transport. Rhinoceroses experienced total body water loss, mobilization of energy reserves, and muscular damage. Alterations in acute phase reactants suggested that animals mounted a stress response. Oxidative stress was observed in black rhinoceroses. We identified the following challenges to animal welfare during transport: hydration status, energy balance, skeletal muscle fatigue, and stress-induced immunomodulation. Measures to mitigate these challenges, such as administration of fluids, need to be included in the planning of future translocations. |
en_ZA |
dc.description.department |
Centre for Veterinary Wildlife Studies |
en_ZA |
dc.description.department |
Companion Animal Clinical Studies |
en_ZA |
dc.description.department |
Paraclinical Sciences |
en_ZA |
dc.description.librarian |
am2021 |
en_ZA |
dc.description.sponsorship |
The Department of Paraclinical Sciences of the University of Pretoria, National Research Foundation, and the Wildlife Group of the South African Veterinary Association. |
en_ZA |
dc.description.uri |
http://www.jwildlifedis.org |
en_ZA |
dc.identifier.citation |
Pohlin, F., Hofmeyr, M., Hooijberg, E.H. et al. 2019, 'Challenges to animal welfare associated with capture and long road transport in boma-adapted black (Diceros bicornis) and semi-captive white (Ceratotherium simum) rhinoceroses', Journal of Wildlife Diseases, vol. 56, no. 2, pp. 294-305. |
en_ZA |
dc.identifier.issn |
0090-3558 (print) |
|
dc.identifier.issn |
1943-3700 (online) |
|
dc.identifier.other |
10.7589/2019-02-045 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/78994 |
|
dc.language.iso |
en |
en_ZA |
dc.publisher |
Wildlife Disease Association |
en_ZA |
dc.rights |
© Wildlife Disease Association 2020 |
en_ZA |
dc.subject |
Energy balance |
en_ZA |
dc.subject |
Fatigue |
en_ZA |
dc.subject |
Hydration |
en_ZA |
dc.subject |
Stress |
en_ZA |
dc.subject |
Translocation |
en_ZA |
dc.subject |
Transport |
en_ZA |
dc.subject |
White rhinoceros (Ceratotherium simum) |
en_ZA |
dc.subject.other |
Veterinary science articles SDG-15 |
en_ZA |
dc.subject.other |
SDG-15: Life on land |
|
dc.title |
Challenges to animal welfare associated with capture and long road transport in boma-adapted black (Diceros bicornis) and semi-captive white (Ceratotherium simum) rhinoceroses |
en_ZA |
dc.type |
Article |
en_ZA |