Abstract:
Response reconstruction is used to obtain accurate replication of vehicle structural responses
of field recorded measurements in a laboratory environment, a crucial step in the process of
Accelerated Destructive Testing (ADT). Response Reconstruction is cast as an inverse problem
whereby the desired input is inferred using the measured outputs of a system. ADT typically
involves large shock loadings resulting in a nonlinear response of the structure. A promising
linear regression technique known as Spanning Basis Transformation Regression (SBTR) in con-
junction with non-overlapping windows casts the low dimensional nonlinear problem as a high
dimensional linear problem. However, it is determined that the original implementation of SBTR
struggles to invert a broader class of sensor configurations. A new windowing method called
AntiDiagonal Averaging (ADA) is developed to overcome the shortcomings of the SBTR im-
plementation. ADA introduces overlaps within the predicted time signal windows and averages
them. The newly proposed method is tested on a numerical quarter car model and is shown to
successfully invert a broader range of sensor configurations as well as being capable of describing
nonlinearities in the system.