dc.contributor.author |
Banasiak, Jacek
|
|
dc.contributor.author |
Dumont, Yves
|
|
dc.contributor.author |
Yatat Djeumen, Ivric Valaire
|
|
dc.date.accessioned |
2020-12-03T06:31:15Z |
|
dc.date.available |
2020-12-03T06:31:15Z |
|
dc.date.issued |
2023-07 |
|
dc.description.abstract |
Many systems in life sciences have been modeled by reaction–diffusion equations. However, under some circumstances, these biological systems may experience instantaneous and periodic perturbations (e.g. harvest, birth, release, fire events, etc) such that an appropriate formalism like impulsive reaction–diffusion equations is necessary to analyze them. While several works tackled the issue of traveling waves for monotone reaction–diffusion equations and the computation of spreading speeds, very little has been done in the case of monotone impulsive reaction–diffusion equations. Based on vector-valued recursion equations theory, we aim to present in this paper results that address two main issues of monotone impulsive reaction–diffusion equations. Our first result deals with the existence of traveling waves for monotone systems of impulsive reaction–diffusion equations. Our second result tackles the computation of spreading speeds for monotone systems of impulsive reaction–diffusion equations. We apply our methodology to a planar system of impulsive reaction–diffusion equations that models tree–grass interactions in fire-prone savannas. Numerical simulations, including numerical approximations of spreading speeds, are finally provided in order to illustrate our theoretical results and support the discussion. |
en_ZA |
dc.description.department |
Mathematics and Applied Mathematics |
en_ZA |
dc.description.librarian |
hj2020 |
en_ZA |
dc.description.sponsorship |
The DST/NRF SARChI Chair in Mathematical Models and Methods in Biosciences and Bioengineering at the University of Pretoria and National Science Centre, Poland. |
en_ZA |
dc.description.uri |
http://link.springer.com/journal/12591 |
en_ZA |
dc.identifier.citation |
Banasiak, J., Dumont, Y. & Yatat Djeumen, I.V. Spreading Speeds and Traveling Waves for Monotone Systems of Impulsive Reaction–Diffusion Equations: Application to Tree–Grass Interactions in Fire-prone Savannas. Differential Equations and Dynamical Systems 31, 547–580 (2023). https://doi.org/10.1007/s12591-020-00552-6. |
en_ZA |
dc.identifier.issn |
0971-3514 (print) |
|
dc.identifier.issn |
0974-6870 (online) |
|
dc.identifier.other |
10.1007/s12591-020-00552-6 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/77253 |
|
dc.language.iso |
en |
en_ZA |
dc.publisher |
Springer |
en_ZA |
dc.rights |
© The Author(s) 2020. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License. |
en_ZA |
dc.subject |
Impulsive event |
en_ZA |
dc.subject |
Pulse fire |
en_ZA |
dc.subject |
Savanna |
en_ZA |
dc.subject |
Traveling wave |
en_ZA |
dc.subject |
Partial differential equation (PDE) |
en_ZA |
dc.subject |
Recursion equation |
en_ZA |
dc.subject |
Monotone cooperative system |
en_ZA |
dc.subject |
Spreading speed |
en_ZA |
dc.title |
Spreading speeds and traveling waves for monotone systems of impulsive reaction–diffusion equations : application to tree–grass interactions in fire-prone savannas |
en_ZA |
dc.type |
Postprint Article |
en_ZA |