Centre Manifold Theory for some continuous and Discrete Epidemiological models

Show simple item record

dc.contributor.advisor Lubuma, Jean M.-S.
dc.contributor.coadvisor Anguelov, Roumen
dc.contributor.postgraduate Dukuza, Njengele Kenneth Kennedy
dc.date.accessioned 2019-12-13T08:07:48Z
dc.date.available 2019-12-13T08:07:48Z
dc.date.created 2019/09/05
dc.date.issued 2019
dc.description Thesis (PhD)--University of Pretoria, 2019.
dc.description.abstract In mathematical epidemiology, the threshold theory introduced by W.O. Kermack and A.G. McKendrick (1927) can be expressed in terms of the basic reproduction number R0. This is defined as the average number of secondary infections that occur when one infective is introduced into a susceptible host population. In this setting and for many diseases, the prediction of the likelihood of persistence or dying out of the disease within the population reads as follows: the disease-free equilibrium is locally asymptotically stable (LAS) when R0 < 1, it is unstable when R0 > 1 and at least one endemic equilibrium (EE) which is LAS is born in this case. In other words, at R0 = 1, a forward bifurcation occurs. However, some diseases undergo the backward bifurcation phenomenon whereby, for R0 < 1, the LAS disease-free equilibrium coexists with a small positive unstable EE and a large positive LAS EE. In this thesis, we study theoretically, numerically, and computationally the existence of the backward bifurcation phenomenon for dynamical systems, with emphasis on a “simple” SIS model with vaccination and a “complex” malaria model. We re-centre the reduction theorem in C. Castillo-Chavez and B. Song (2004) and highlight its advantage over the legendary power series approximations in the use of the Centre Manifold Theory (CMT). We propose and prove a Centre Manifold-based theorem for the existence of a backward bifurcation for discrete dynamical systems. We construct nonstandard finite difference (NSFD) schemes and prove that they preserve the backward bifurcation property of the continuous models. We make the results more specific for the SIS and malaria models for which we also provide numerical simulations that support the theory. In particular we prove for the malaria model a conjecture by Chitnis et al. (2006) for the existence of the backward bifurcation.
dc.description.availability Unrestricted
dc.description.degree PhD
dc.description.department Mathematics and Applied Mathematics
dc.identifier.citation Dukuza, KKK 2019, Centre Manifold Theory for some continuous and Discrete Epidemiological models, PhD Thesis, University of Pretoria, Pretoria, viewed yymmdd <http://hdl.handle.net/2263/72721>
dc.identifier.other S2019
dc.identifier.uri http://hdl.handle.net/2263/72721
dc.language.iso en
dc.publisher University of Pretoria
dc.rights © 2019 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria.
dc.subject UCTD
dc.title Centre Manifold Theory for some continuous and Discrete Epidemiological models
dc.type Thesis


Files in this item

This item appears in the following Collection(s)

Show simple item record