Abstract:
Bonded repairs using composite patches over metallic structures have been evaluated as a cost effective method to increase the life of damaged structures. The J-integral is a widely applied fracture mechanics parameter relating to the energy release associated with crack growth and is a measure of the deformation intensity at the crack tip. In practice, the calculated J-integral can be compared with a critical value for the material under consideration to predict fracture. This study aimed at providing an overview of the behavior of a cracked plate of AA7075-T6 alloy repaired with a boron-epoxy patch bonded with FM73 Adhesive layer. The Finite Element Method (FEM) using Abaqus Software 6.14 predicted the performance. The results show a considerable decrease in the value of the J-integral. This is due to the beneficial effect of the patch on the stress state at the crack tip. The best results were obtained from a uni-directional composite fibres orientation of 0°, where the fibers oriented parallel to the direction of load. A parametric analysis has been carried out to evaluate the effect of lay-up, load variation and crack mouth opening on the J-integral. It was found that the crack mouth opening displacement (CMOD) was reduced by 90–97%.