Abstract:
Supply and demand mismatches in renewable energy systems are addressed by integrating battery banks. Selecting battery bank terminal voltage to match DC-bus voltage (350–450 V for single-phase AC loads), necessitates employing battery banks with long-string connections along with their attendant shortcomings. To employ short-string battery banks, high-boost-ratio bidirectional interfaces are required between the DC-bus and battery bank. Current literature lacks a single source where high-boost-ratio converters’ are categorised and their strengths and weaknesses identified. Comprehensive literature review is hence carried out to determine attributes of various high-boost-ratio DC–DC converters and also categorise them. The key attributes of a topology to interface battery storage to a DC-bus are determined. Based on these a bidirectional tapped-inductor boost converter emerges as the best candidate. Moreover, in order to regulate output voltage, voltage-gain versus duty-ratio characteristics should not be very steep. Since battery terminal voltage varies with state-of-charge, closed-loop control is necessary. Converter's small-signal transfer-functions are derived and a two-loop controller to regulate output voltage and inductor current while allowing bidirectional power flow designed. A novel bidirectional passive lossless snubber circuit is employed to clamp the voltage spikes across the active switches, without altering the normal operation of the converter.