A generalized Bayesian nonlinear mixed‐effects regression model for zero‐inflated longitudinal count data in tuberculosis trials

Show simple item record

dc.contributor.author Burger, Divan Aristo
dc.contributor.author Schall, Robert
dc.contributor.author Jacobs, Rianne
dc.contributor.author Chen, Ding-Geng (Din)
dc.date.accessioned 2019-11-04T11:25:11Z
dc.date.issued 2019-07
dc.description.abstract In this paper, we investigate Bayesian generalized nonlinear mixed‐effects (NLME) regression models for zero‐inflated longitudinal count data. The methodology is motivated by and applied to colony forming unit (CFU) counts in extended bactericidal activity tuberculosis (TB) trials. Furthermore, for model comparisons, we present a generalized method for calculating the marginal likelihoods required to determine Bayes factors. A simulation study shows that the proposed zero‐inflated negative binomial regression model has good accuracy, precision, and credibility interval coverage. In contrast, conventional normal NLME regression models applied to log‐transformed count data, which handle zero counts as left censored values, may yield credibility intervals that undercover the true bactericidal activity of anti‐TB drugs. We therefore recommend that zero‐inflated NLME regression models should be fitted to CFU count on the original scale, as an alternative to conventional normal NLME regression models on the logarithmic scale. en_ZA
dc.description.department Statistics en_ZA
dc.description.embargo 2020-07-01
dc.description.librarian hj2019 en_ZA
dc.description.sponsorship The National Research Foundation, South Africa (South Africa DST‐NRF‐SAMRC SARChI Research Chair in Biostatistics, Grant number 114613). en_ZA
dc.description.uri http://wileyonlinelibrary.com/journal/pst en_ZA
dc.identifier.citation Burger DA, Schall R, Jacobs R, Chen D-G. A generalized Bayesian nonlinear mixed-effects regression model for zero-inflated longitudinal count data in tuberculosis trials. Pharmaceutical Statistics. 2019;18:420–432. https://doi.org/10.1002/pst.1933. en_ZA
dc.identifier.issn 1539-1604 (print)
dc.identifier.issn 1539-1612 (online)
dc.identifier.other 10.1002/pst.1933
dc.identifier.uri http://hdl.handle.net/2263/72124
dc.language.iso en en_ZA
dc.publisher Wiley en_ZA
dc.rights © 2019 John Wiley & Sons, Ltd. This is the pre-peer reviewed version of the following article : A generalized Bayesian nonlinear mixed-effects regression model for zero-inflated longitudinal count data in tuberculosis trials. Pharmaceutical Statistics. 2019;18:420–432. https://doi.org/10.1002/pst.1933. The definite version is available at : wileyonlinelibrary.com/journal/pst. en_ZA
dc.subject Nonlinear mixed‐effects (NLME) en_ZA
dc.subject Colony forming unit (CFU) en_ZA
dc.subject Tuberculosis (TB) en_ZA
dc.subject Bayesian en_ZA
dc.subject Bactericidal activity en_ZA
dc.subject Longitudinal en_ZA
dc.subject Mixed‐effects en_ZA
dc.subject Zero inflated en_ZA
dc.subject Bactericidal activity en_ZA
dc.subject Sterilizing activity en_ZA
dc.subject Poisson en_ZA
dc.subject Pyrazinamide en_ZA
dc.subject Moxifloxacin en_ZA
dc.subject Combination en_ZA
dc.subject Pretomanid (PA‐824) en_ZA
dc.subject Inference en_ZA
dc.subject Culture en_ZA
dc.title A generalized Bayesian nonlinear mixed‐effects regression model for zero‐inflated longitudinal count data in tuberculosis trials en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record