A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals

Show simple item record

dc.contributor.author Brzezniak, Zdzislaw
dc.contributor.author Hausenblas, Erika
dc.contributor.author Razafimandimby, Paul Andre
dc.date.accessioned 2019-10-23T08:02:16Z
dc.date.issued 2019-11
dc.description.abstract In this note we prove the existence and uniqueness of local maximal smooth solution of the stochastic simplified Ericksen-Leslie systems modelling the dynamics of nematic liquid crystals under stochastic perturbations. en_ZA
dc.description.department Mathematics and Applied Mathematics en_ZA
dc.description.embargo 2020-11-01
dc.description.librarian hj2019 en_ZA
dc.description.sponsorship The FWF-Austrian Science Fund, the European Unions Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement, the National Research Foundation South Africa and the European Mathematical Society for the EMS-Simons for Africa-Collaborative research grant. en_ZA
dc.description.uri http://aimsciences.org/journal/1531-3492 en_ZA
dc.identifier.citation Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete and Continuous Dynamical Systems : Series B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106. en_ZA
dc.identifier.issn 1531-3492 (print)
dc.identifier.issn 1553-524X (online)
dc.identifier.other 10.3934/dcdsb.2019106
dc.identifier.uri http://hdl.handle.net/2263/71935
dc.language.iso en en_ZA
dc.publisher American Institute of Mathematical Sciences en_ZA
dc.rights American Institute of Mathematical Sciences (AIMS) en_ZA
dc.subject Ericksen-Leslie equations en_ZA
dc.subject Nematic liquid crystals en_ZA
dc.subject Fixed point method en_ZA
dc.subject Smooth solution en_ZA
dc.subject Local solution en_ZA
dc.title A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record