dc.contributor.author |
Moraschini, Tommaso
|
|
dc.contributor.author |
Raftery, James G.
|
|
dc.date.accessioned |
2019-10-01T10:08:20Z |
|
dc.date.issued |
2019-09 |
|
dc.description.abstract |
It is proved that every prevariety of algebras is categorically equivalent to a ‘prevariety of logic’, i.e., to the equivalent algebraic semantics of some sentential deductive system. This allows us to show that no nontrivial equation in the language ∧,∨,∘ holds in the congruence lattices of all members of every variety of logic, and that being a (pre)variety of logic is not a categorical property. |
en_ZA |
dc.description.department |
Mathematics and Applied Mathematics |
en_ZA |
dc.description.embargo |
2020-09-01 |
|
dc.description.librarian |
hj2019 |
en_ZA |
dc.description.uri |
https://link.springer.com/journal/12 |
en_ZA |
dc.identifier.citation |
Moraschini, T. & Raftery, J.G. On prevarieties of logic. Algebra universalis (2019) 80: 37. https://doi.org/10.1007/s00012-019-0611-7. |
en_ZA |
dc.identifier.issn |
0002-5240 (print) |
|
dc.identifier.issn |
1420-8911 (online) |
|
dc.identifier.other |
10.1007/s00012-019-0611-7 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/71517 |
|
dc.language.iso |
en |
en_ZA |
dc.publisher |
Springer |
en_ZA |
dc.rights |
© Springer Nature Switzerland AG 2019. The original publication is available at : https://link.springer.com/journal/12. |
en_ZA |
dc.subject |
Prevariety of logic |
en_ZA |
dc.subject |
Algebraizable logic |
en_ZA |
dc.subject |
Maltsev class |
en_ZA |
dc.title |
On prevarieties of logic |
en_ZA |
dc.type |
Postprint Article |
en_ZA |