On prevarieties of logic

Show simple item record

dc.contributor.author Moraschini, Tommaso
dc.contributor.author Raftery, James G.
dc.date.accessioned 2019-10-01T10:08:20Z
dc.date.issued 2019-09
dc.description.abstract It is proved that every prevariety of algebras is categorically equivalent to a ‘prevariety of logic’, i.e., to the equivalent algebraic semantics of some sentential deductive system. This allows us to show that no nontrivial equation in the language ∧,∨,∘ holds in the congruence lattices of all members of every variety of logic, and that being a (pre)variety of logic is not a categorical property. en_ZA
dc.description.department Mathematics and Applied Mathematics en_ZA
dc.description.embargo 2020-09-01
dc.description.librarian hj2019 en_ZA
dc.description.uri https://link.springer.com/journal/12 en_ZA
dc.identifier.citation Moraschini, T. & Raftery, J.G. On prevarieties of logic. Algebra universalis (2019) 80: 37. https://doi.org/10.1007/s00012-019-0611-7. en_ZA
dc.identifier.issn 0002-5240 (print)
dc.identifier.issn 1420-8911 (online)
dc.identifier.other 10.1007/s00012-019-0611-7
dc.identifier.uri http://hdl.handle.net/2263/71517
dc.language.iso en en_ZA
dc.publisher Springer en_ZA
dc.rights © Springer Nature Switzerland AG 2019. The original publication is available at : https://link.springer.com/journal/12. en_ZA
dc.subject Prevariety of logic en_ZA
dc.subject Algebraizable logic en_ZA
dc.subject Maltsev class en_ZA
dc.title On prevarieties of logic en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record