On exponential and trigonometric functions on nonuniform lattices

Show simple item record

dc.contributor.author Nangho, Maurice Kenfack
dc.contributor.author Foupouagnigni, M.
dc.contributor.author Koepf, W.
dc.date.accessioned 2019-07-15T12:01:23Z
dc.date.issued 2019-05
dc.description.abstract We develop analogs of exponential and trigonometric functions (including the basic exponential function) and derive their fundamental properties: addition formula, positivity, reciprocal and fundamental relations of trigonometry. We also establish a binomial theorem, characterize symmetric orthogonal polynomials and provide a formula for computing the nth-derivatives for analytic functions on nonuniform lattices (q-quadratic and quadratic variables). en_ZA
dc.description.department Mathematics and Applied Mathematics en_ZA
dc.description.embargo 2020-05-01
dc.description.librarian hj2019 en_ZA
dc.description.sponsorship This work was partially supported by the Alexander von Humboldt Foundation. en_ZA
dc.description.uri https://link.springer.com/journal/11139 en_ZA
dc.identifier.citation Kenfack Nangho, M., Foupouagnigni, M. & Koepf, W. On exponential and trigonometric functions on nonuniform lattices. Ramanujan Journal (2019) 49: 1-37. https://doi.org/10.1007/s11139-018-0107-7. en_ZA
dc.identifier.issn 1382-4090 (print)
dc.identifier.issn 1572-9303 (online)
dc.identifier.other 10.1007/s11139-018-0107-7
dc.identifier.uri http://hdl.handle.net/2263/70712
dc.language.iso en en_ZA
dc.publisher Springer en_ZA
dc.rights © Springer Science+Business Media, LLC, part of Springer Nature 2019. The original publication is available at : http://link.springer.com/journal/11139. en_ZA
dc.subject Symmetric functions and nonuniform lattices en_ZA
dc.subject Basic exponential function en_ZA
dc.subject Askey–Wilson polynomials en_ZA
dc.title On exponential and trigonometric functions on nonuniform lattices en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record