dc.contributor.author |
Nangho, Maurice Kenfack
|
|
dc.contributor.author |
Foupouagnigni, M.
|
|
dc.contributor.author |
Koepf, W.
|
|
dc.date.accessioned |
2019-07-15T12:01:23Z |
|
dc.date.issued |
2019-05 |
|
dc.description.abstract |
We develop analogs of exponential and trigonometric functions (including the basic exponential function) and derive their fundamental properties: addition formula, positivity, reciprocal and fundamental relations of trigonometry. We also establish a binomial theorem, characterize symmetric orthogonal polynomials and provide a formula for computing the nth-derivatives for analytic functions on nonuniform lattices (q-quadratic and quadratic variables). |
en_ZA |
dc.description.department |
Mathematics and Applied Mathematics |
en_ZA |
dc.description.embargo |
2020-05-01 |
|
dc.description.librarian |
hj2019 |
en_ZA |
dc.description.sponsorship |
This work was partially supported by the Alexander von Humboldt Foundation. |
en_ZA |
dc.description.uri |
https://link.springer.com/journal/11139 |
en_ZA |
dc.identifier.citation |
Kenfack Nangho, M., Foupouagnigni, M. & Koepf, W. On exponential and trigonometric functions on nonuniform lattices. Ramanujan Journal (2019) 49: 1-37. https://doi.org/10.1007/s11139-018-0107-7. |
en_ZA |
dc.identifier.issn |
1382-4090 (print) |
|
dc.identifier.issn |
1572-9303 (online) |
|
dc.identifier.other |
10.1007/s11139-018-0107-7 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/70712 |
|
dc.language.iso |
en |
en_ZA |
dc.publisher |
Springer |
en_ZA |
dc.rights |
© Springer Science+Business Media, LLC, part of Springer Nature 2019. The original publication is available at : http://link.springer.com/journal/11139. |
en_ZA |
dc.subject |
Symmetric functions and nonuniform lattices |
en_ZA |
dc.subject |
Basic exponential function |
en_ZA |
dc.subject |
Askey–Wilson polynomials |
en_ZA |
dc.title |
On exponential and trigonometric functions on nonuniform lattices |
en_ZA |
dc.type |
Postprint Article |
en_ZA |