Hilbert isometries and maximal deviation preserving maps on JB-algebras

Show simple item record

dc.contributor.author Roelands, Mark
dc.contributor.author Wortel, Marten
dc.date.accessioned 2019-07-10T09:44:38Z
dc.date.issued 2019-08
dc.description.abstract In this paper we characterize the surjective linear variation norm isometries on JB-algebras. Variation norm isometries are precisely the maps that preserve the maximal deviation, the quantum analogue of the standard deviation, which plays an important role in quantum statistics. Consequently, we characterize the Hilbert's metric isometries on cones in JB-algebras. en_ZA
dc.description.department Mathematics and Applied Mathematics en_ZA
dc.description.embargo 2020-08-20
dc.description.librarian hj2019 en_ZA
dc.description.uri http://www.elsevier.com/locate/aim en_ZA
dc.identifier.citation Roelands, M. & Wortel, M. 2019, 'Hilbert isometries and maximal deviation preserving maps on JB-algebras', Advances in Mathematics, vol. 352, pp. 836-861. en_ZA
dc.identifier.issn 0001-8708 (print)
dc.identifier.issn 1090-2082 (online)
dc.identifier.other 10.1016/j.aim.2019.06.027
dc.identifier.uri http://hdl.handle.net/2263/70666
dc.language.iso en en_ZA
dc.publisher Elsevier en_ZA
dc.rights © 2019 Elsevier Inc. All rights reserved. Notice : this is the author’s version of a work that was accepted for publication in Advances in Mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. A definitive version was subsequently published in Advances in Mathematics, vol. 352, pp. 836-861, 2019. doi : 10.1016/j.aim.2019.06.027. en_ZA
dc.subject JB-algebras en_ZA
dc.subject Hilbert's metric en_ZA
dc.subject Maximal deviation en_ZA
dc.subject Linear isometries en_ZA
dc.title Hilbert isometries and maximal deviation preserving maps on JB-algebras en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record