We are excited to announce that the repository will soon undergo an upgrade, featuring a new look and feel along with several enhanced features to improve your experience. Please be on the lookout for further updates and announcements regarding the launch date. We appreciate your support and look forward to unveiling the improved platform soon.
dc.contributor.author | Yadavalli, Venkata S. Sarma![]() |
|
dc.contributor.author | Bekker, Andriette, 1958-![]() |
|
dc.date.accessioned | 2008-09-02T07:35:11Z | |
dc.date.available | 2008-09-02T07:35:11Z | |
dc.date.issued | 2005-05 | |
dc.description.abstract | A consistent asymptotic normal (CAN) estimator and confidence limits for the steady-state availability of series and parallel systems subject to unit failures, common-cause shock (CCS)failures and human error are studied. This paper also deals with the estimation from a Bayesian viewpoint with a number of prior distributions assumed for the unknown parameters in the system, which reflect different degrees of belief on the failure mechanisms. A Monte Carlo simulation is used to derive the posterior distribution for the steady-state availability and subsequently the highest posterior density (HPD) intervals. A numerical example illustrates the results. | en |
dc.description.abstract | 'n Konsekwente asimptotiese normaalberamer en vertroueintervalle vir die ewewigstoestandsbeskikbaarheid van stelsels in serie en parallel, wat onderworpe is aan eenheids-, gemeenskaplike skok- en menslike foutfalings, word bestudeer. In die artikel word ook 'n Bayes-benadering gevolg vir die beraming deur 'n aantal a priori-verdelings vir die onbekende parameters in die stelsel, wat verskillende grade van vertroue in die falingsmeganismes weerspieël, te aanvaar. Monte Carlo-simulasie word gebruik om die a posteriori-verdeling vir die ewewigstoestandsbeskikbaarheid en daarna die hoogste a posteriori-digtheidsintervalle (HPD) af te lei. 'n Numeriese voorbeeld illustreer die resultate. | |
dc.format.extent | 214470 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Yadavalli, VSS, & Bekker, A 2005,'Stochastic model for common cause failures and human error', South African Journal of Industrial Engineering, vol. 16, no. 1, pp. 41-53. [http://www.journals.co.za/ej/ejour_indeng.html] | en |
dc.identifier.issn | 1012-277X | |
dc.identifier.uri | http://hdl.handle.net/2263/6835 | |
dc.language.iso | en | en |
dc.publisher | Southern African Institute for Industrial Engineering | en |
dc.rights | Southern African Institute for Industrial Engineering | en |
dc.subject | Consistent asymptotic normal (CAN) | en |
dc.subject | Steady-state availability | en |
dc.subject | Common-cause shock (CCS) | en |
dc.subject | Parallel systems | en |
dc.subject | Bayesian | en |
dc.subject | Monte Carlo Simulation | en |
dc.subject | Highest posterior density (HPD) | en |
dc.subject.lcsh | System failures (Engineering) | |
dc.subject.lcsh | Nuclear power plants -- Risk assessment -- South Africa | |
dc.subject.lcsh | Reliability (Engineering) -- Statistical methods | |
dc.title | Stochastic model for common cause failures and human error | en |
dc.type | Article | en |