Self-adaptive quantum particle swarm optimization for dynamic environments

Show simple item record

dc.contributor.author Pamparà, Gary
dc.contributor.author Engelbrecht, Andries P.
dc.date.accessioned 2018-12-03T12:02:02Z
dc.date.issued 2018-10
dc.description.abstract The quantum-inspired particle swarm optimization (QPSO) algorithm has been developed to find and track an optimum for dynamic optimization problems. Though QPSO has been shown to be effective, despite its simplicity, it does introduce an additional control parameter: the radius of the quantum cloud. The performance of QPSO is sensitive to the value assigned to this problem dependent parameter, which basically limits the area of the search space wherein new, better optima can be detected. This paper proposes a strategy to dynamically adapt the quantum radius, with changes in the environment. A comparison of the adaptive radius QPSO with the static radius QPSO showed that the adaptive approach achieves desirable results, without prior tuning of the quantum radius. en_ZA
dc.description.department Computer Science en_ZA
dc.description.embargo 2019-10-03
dc.description.librarian hj2018 en_ZA
dc.description.uri http://link.springer.combookseries/558 en_ZA
dc.identifier.citation Pamparà G., Engelbrecht A.P. (2018) Self-adaptive Quantum Particle Swarm Optimization for Dynamic Environments. In: Dorigo M., Birattari M., Blum C., Christensen A., Reina A., Trianni V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science, vol 11172. Springer, Cham. en_ZA
dc.identifier.issn 0302-9743 (print)
dc.identifier.issn 1611-3349 (online)
dc.identifier.issn 10.1007/978-3-030-00533-7_13
dc.identifier.uri http://hdl.handle.net/2263/67434
dc.language.iso en en_ZA
dc.publisher Springer en_ZA
dc.rights © Springer Nature Switzerland AG 2018. The original publication is available at : http://link.springer.combookseries/558. en_ZA
dc.subject Swarm intelligence en_ZA
dc.subject Adaptive approach en_ZA
dc.subject Additional control en_ZA
dc.subject Dynamic environments en_ZA
dc.subject Dynamic optimization problem (DOP) en_ZA
dc.subject Search spaces en_ZA
dc.subject Self-adaptive en_ZA
dc.subject Particle swarm optimization (PSO) en_ZA
dc.subject Quantum-inspired particle swarm optimization (QPSO) en_ZA
dc.title Self-adaptive quantum particle swarm optimization for dynamic environments en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record