dc.contributor.author |
Jansen van Rensburg, Gerhardus J.
|
|
dc.contributor.author |
Kok, Schalk
|
|
dc.contributor.author |
Wilke, Daniel Nicolas
|
|
dc.date.accessioned |
2018-09-03T08:20:29Z |
|
dc.date.issued |
2018-03 |
|
dc.description.abstract |
This paper presents the development and numerical implementation of a state variable based thermomechanical material model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete numerical implementation is presented as an Abaqus UMAT and linked subroutines. Implementation is discussed with detailed explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are also presented. |
en_ZA |
dc.description.department |
Mechanical and Aeronautical Engineering |
en_ZA |
dc.description.embargo |
2019-03-17 |
|
dc.description.librarian |
hj2018 |
en_ZA |
dc.description.uri |
https://link.springer.com/journal/466 |
en_ZA |
dc.identifier.citation |
Jansen van Rensburg, G.J., Kok, S. & Wilke, D.N. Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density. Computational Mechanics (2018). https://doi.org/10.1007/s00466-018-1568-7. NYP. |
en_ZA |
dc.identifier.issn |
0178-7675 (print) |
|
dc.identifier.issn |
1432-0924 (online) |
|
dc.identifier.other |
10.1007/s00466-018-1568-7 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/66427 |
|
dc.language.iso |
en |
en_ZA |
dc.publisher |
Springer |
en_ZA |
dc.rights |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018. The original publication is available at : https://link.springer.com/journal/466. |
en_ZA |
dc.subject |
Constitutive behaviour |
en_ZA |
dc.subject |
Mechanical threshold strength |
en_ZA |
dc.subject |
Elasto-viscoplastic material |
en_ZA |
dc.subject |
Abaqus UMAT |
en_ZA |
dc.subject |
User material (UMAT) |
en_ZA |
dc.subject |
Finite element method |
en_ZA |
dc.subject |
Threshold strength |
en_ZA |
dc.subject |
Numerical implementation |
en_ZA |
dc.subject |
Internal state variables |
en_ZA |
dc.subject |
Finite element formulations |
en_ZA |
dc.subject |
Dynamic recrystallisation |
en_ZA |
dc.subject |
Thermal oil recovery |
en_ZA |
dc.subject |
Subroutines |
en_ZA |
dc.subject |
Recrystallization (metallurgy) |
en_ZA |
dc.subject |
Copper |
en_ZA |
dc.title |
Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density |
en_ZA |
dc.type |
Postprint Article |
en_ZA |