Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density

Show simple item record

dc.contributor.author Jansen van Rensburg, Gerhardus J.
dc.contributor.author Kok, Schalk
dc.contributor.author Wilke, Daniel Nicolas
dc.date.accessioned 2018-09-03T08:20:29Z
dc.date.issued 2018-03
dc.description.abstract This paper presents the development and numerical implementation of a state variable based thermomechanical material model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete numerical implementation is presented as an Abaqus UMAT and linked subroutines. Implementation is discussed with detailed explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are also presented. en_ZA
dc.description.department Mechanical and Aeronautical Engineering en_ZA
dc.description.embargo 2019-03-17
dc.description.librarian hj2018 en_ZA
dc.description.uri https://link.springer.com/journal/466 en_ZA
dc.identifier.citation Jansen van Rensburg, G.J., Kok, S. & Wilke, D.N. Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density. Computational Mechanics (2018). https://doi.org/10.1007/s00466-018-1568-7. NYP. en_ZA
dc.identifier.issn 0178-7675 (print)
dc.identifier.issn 1432-0924 (online)
dc.identifier.other 10.1007/s00466-018-1568-7
dc.identifier.uri http://hdl.handle.net/2263/66427
dc.language.iso en en_ZA
dc.publisher Springer en_ZA
dc.rights © Springer-Verlag GmbH Germany, part of Springer Nature 2018. The original publication is available at : https://link.springer.com/journal/466. en_ZA
dc.subject Constitutive behaviour en_ZA
dc.subject Mechanical threshold strength en_ZA
dc.subject Elasto-viscoplastic material en_ZA
dc.subject Abaqus UMAT en_ZA
dc.subject User material (UMAT) en_ZA
dc.subject Finite element method en_ZA
dc.subject Threshold strength en_ZA
dc.subject Numerical implementation en_ZA
dc.subject Internal state variables en_ZA
dc.subject Finite element formulations en_ZA
dc.subject Dynamic recrystallisation en_ZA
dc.subject Thermal oil recovery en_ZA
dc.subject Subroutines en_ZA
dc.subject Recrystallization (metallurgy) en_ZA
dc.subject Copper en_ZA
dc.title Modelling multiple cycles of static and dynamic recrystallisation using a fully implicit isotropic material model based on dislocation density en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record