Multivariate normal estimation : the case (n < p)

Show simple item record

dc.contributor.author Strydom, Nina
dc.contributor.author Crowther, N.A.S. (Nicolaas Andries Sadie), 1944-
dc.date.accessioned 2017-10-25T05:30:51Z
dc.date.issued 2018
dc.description.abstract Estimation in the multivariate context when the number of observations available is less than the number of variables is a classical theoretical problem. In order to ensure estimability, one has to assume certain constraints on the parameters. A method for maximum likelihood estimation under constraints is proposed to solve this problem. Even in the extreme case where only a single multivariate observation is available, this may provide a feasible solution. It simultaneously provides a simple, straightforward methodology to allow for specific structures within and between covariance matrices of several populations. This methodology yields exact maximum likelihood estimates. en_ZA
dc.description.department Statistics en_ZA
dc.description.embargo 2018-09-21
dc.description.librarian hj2017 en_ZA
dc.description.uri http://www.tandfonline.com/loi/lsta20 en_ZA
dc.identifier.citation Nina Strydom & Nico Crowther (2018) Multivariate normal estimation: the case (n < p), Communications in Statistics - Theory and Methods, 47:5, 1071-1090, DOI: 10.1080/03610926.2017.1316405. en_ZA
dc.identifier.issn 0361-0926 (print)
dc.identifier.issn 1532-415X (online)
dc.identifier.other 10.1080/03610926.2017.1316405
dc.identifier.uri http://hdl.handle.net/2263/62917
dc.language.iso en en_ZA
dc.publisher Taylor and Francis en_ZA
dc.rights © 2017 Taylor & Francis Group, LLC. This is an electronic version of an article published in Communications in Statistics Theory and Methods , vol. 47, no. 5, pp. 1071-1090, 2018. doi : 10.1080/03610926.2017.1316405. Communications in Statistics Theory and Methods is available online at : http://www.tandfonline.comloi/lsta20. en_ZA
dc.subject Linear growth in covariance matrices en_ZA
dc.subject Maximum likelihood estimation under constraints en_ZA
dc.subject Observations less than parameters en_ZA
dc.subject Proportional covariance matrices en_ZA
dc.subject Proportional growth in covariance matrices en_ZA
dc.subject Seemingly unrelated regression en_ZA
dc.subject Covariance matrix en_ZA
dc.subject Matrix algebra en_ZA
dc.subject Maximum likelihood en_ZA
dc.subject Multivariate observations en_ZA
dc.subject Multivariate normal en_ZA
dc.subject Feasible solution en_ZA
dc.subject Estimability en_ZA
dc.subject Covariance matrices en_ZA
dc.title Multivariate normal estimation : the case (n < p) en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record