dc.contributor.author |
Strydom, Nina
|
|
dc.contributor.author |
Crowther, N.A.S. (Nicolaas Andries Sadie), 1944-
|
|
dc.date.accessioned |
2017-10-25T05:30:51Z |
|
dc.date.issued |
2018 |
|
dc.description.abstract |
Estimation in the multivariate context when the number of observations available is less than the number of variables is a classical theoretical problem. In order to ensure estimability, one has to assume certain constraints on the parameters. A method for maximum likelihood estimation under constraints is proposed to solve this problem. Even in the extreme case where only a single multivariate observation is available, this may provide a feasible solution. It simultaneously provides a simple, straightforward methodology to allow for specific structures within and between covariance matrices of several populations. This methodology yields exact maximum likelihood estimates. |
en_ZA |
dc.description.department |
Statistics |
en_ZA |
dc.description.embargo |
2018-09-21 |
|
dc.description.librarian |
hj2017 |
en_ZA |
dc.description.uri |
http://www.tandfonline.com/loi/lsta20 |
en_ZA |
dc.identifier.citation |
Nina Strydom & Nico Crowther (2018) Multivariate normal estimation:
the case (n < p), Communications in Statistics - Theory and Methods, 47:5, 1071-1090, DOI:
10.1080/03610926.2017.1316405. |
en_ZA |
dc.identifier.issn |
0361-0926 (print) |
|
dc.identifier.issn |
1532-415X (online) |
|
dc.identifier.other |
10.1080/03610926.2017.1316405 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/62917 |
|
dc.language.iso |
en |
en_ZA |
dc.publisher |
Taylor and Francis |
en_ZA |
dc.rights |
© 2017 Taylor & Francis Group, LLC. This is an electronic version of an article published in Communications in Statistics Theory and Methods , vol. 47, no. 5, pp. 1071-1090, 2018. doi : 10.1080/03610926.2017.1316405. Communications in Statistics Theory and Methods is available online at : http://www.tandfonline.comloi/lsta20. |
en_ZA |
dc.subject |
Linear growth in covariance matrices |
en_ZA |
dc.subject |
Maximum likelihood estimation under constraints |
en_ZA |
dc.subject |
Observations less than parameters |
en_ZA |
dc.subject |
Proportional covariance matrices |
en_ZA |
dc.subject |
Proportional growth in covariance matrices |
en_ZA |
dc.subject |
Seemingly unrelated regression |
en_ZA |
dc.subject |
Covariance matrix |
en_ZA |
dc.subject |
Matrix algebra |
en_ZA |
dc.subject |
Maximum likelihood |
en_ZA |
dc.subject |
Multivariate observations |
en_ZA |
dc.subject |
Multivariate normal |
en_ZA |
dc.subject |
Feasible solution |
en_ZA |
dc.subject |
Estimability |
en_ZA |
dc.subject |
Covariance matrices |
en_ZA |
dc.title |
Multivariate normal estimation : the case (n < p) |
en_ZA |
dc.type |
Postprint Article |
en_ZA |