The influence of a multiple tube-inlet condition on heat transfer in the transitional flow regime

Show simple item record

dc.contributor.advisor Meyer, Josua P. en
dc.contributor.postgraduate Pallent, Leslie Matthew James en
dc.date.accessioned 2017-10-13T13:41:22Z
dc.date.available 2017-10-13T13:41:22Z
dc.date.created 2017-09-08 en
dc.date.issued 2017 en
dc.description Dissertation (MEng)--University of Pretoria, 2017. en
dc.description.abstract In the industrial design of heat exchangers, engineers have long followed the general rule of avoiding transitional flow, and have rather designed a system operating in the turbulent flow regime. Whilst the turbulent regime is better for heat transfer, the higher friction inside the tube results in a much higher pressure drop which inevitably results in the system requiring a more powerful pump than if the system were to operate in the laminar regime. Designing a heat exchanger that operates in the turbulent flow regime is often the safer option, since little published design data is available for flow in the transitional flow regime, giving rise to numerous unwanted uncertainties during the design phase. Recent research into the transitional flow regime has resulted in promising experimental data that shows the regime is not as unstable as previously suspected. The regime allows for higher heat transfer than flows in the laminar regime, yet lower pressure drops than flows in the turbulent regime. Numerous investigations have previously been performed on a single uniformly heated tube operating in the transitional flow regime, however, there exists no data on the influence of a multiple tube inlet condition, as typically found in shell and tube heat exchangers, on the heat transfer characteristics. The purpose of this study was thus to determine the influence of varying tube pitch ratios on the fully developed heat transfer characteristics of three smooth circular horizontal tubes. An experimental set up was designed and built to accommodate a single tube heat exchanger used for validation purposes, and a multiple tube heat exchanger comprising of three identical and equally spaced tubes. Using a DC power supply, the tubes were uniformly heated at 2, 3 and 4 kW/m2 along the length of the test section. The heat transfer characteristics were determined experimentally for outer diameter tube pitch ratios of 1.25 and 1.5 of three 4 mm inner diameter tubes, each 6 m in length for a range of Reynolds numbers of 1 000 to 7 000. Water was used as the test fluid. Using PT100 probes and thermocouples at the inlet, outlet and outer surface of the test section, it was found that the presence of multiple tubes at the inlet of the heat exchanger for a pitch ratio of 1.25 promoted the onset of transition for the centre tube, and sharpened the transition gradient of the outer tubes. This effect noticeably increased with increasing heat flux and was absent at the higher pitch ratio of 1.5. en_ZA
dc.description.availability Unrestricted en
dc.description.degree MEng en
dc.description.department Mechanical and Aeronautical Engineering en
dc.identifier.citation Pallent, LMJ 2017, The influence of a multiple tube-inlet condition on heat transfer in the transitional flow regime, MEng Dissertation, University of Pretoria, Pretoria, viewed yymmdd <http://hdl.handle.net/2263/62788> en
dc.identifier.other S2017 en
dc.identifier.uri http://hdl.handle.net/2263/62788
dc.publisher University of Pretoria en
dc.rights © 2017 University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. en
dc.subject UCTD en
dc.subject Multiple tube-inlet condition
dc.subject Heat transfer
dc.subject Transitional flow regime
dc.subject.other Engineering, built environment and information technology theses SDG-07
dc.subject.other SDG-07: Affordable and clean energy
dc.subject.other Engineering, built environment and information technology theses SDG-09
dc.subject.other SDG-09: Industry, innovation and infrastructure
dc.subject.other Engineering, built environment and information technology theses SDG-13
dc.subject.other SDG-13: Climate action
dc.title The influence of a multiple tube-inlet condition on heat transfer in the transitional flow regime en_ZA
dc.type Dissertation en


Files in this item

This item appears in the following Collection(s)

Show simple item record