Solution of inverse problem - regularization via thermodynamical criterion

Show simple item record

dc.contributor.author Cialkowski, M. en
dc.contributor.author Frackowiak, A. en
dc.contributor.author Gampe, U. en
dc.contributor.author Kolodziej, J. en
dc.contributor.author Semklo, L. en
dc.date.accessioned 2017-08-28T07:07:59Z
dc.date.available 2017-08-28T07:07:59Z
dc.date.issued 2016 en
dc.description Papers presented to the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Costa de Sol, Spain on 11-13 July 2016. en
dc.description.abstract In engineering practice, measuring temperature on both sides of a wall (of, for example, turbine casing or combustion chamber) is not always possible. On the other hand, measurement of both temperature and heat flux on the outer surface of the wall is possible. For transient heat conduction equation, measurements of temperature and heat flux supplemented by the initial condition state the Cauchy problem, which is ill-conditioned In this paper, the stable solution is obtained for the Cauchy problem using the Laplace transformation and the minimisation of continuity in the process of integration of convolution. Test examples confirm proposed algorithm for the inverse problem solution. en
dc.format.extent 6 pages en
dc.format.medium PDF en
dc.identifier.uri http://hdl.handle.net/2263/61944
dc.language.iso en en
dc.publisher HEFAT en
dc.rights University of Pretoria en
dc.subject Thermodynamical criterion en
dc.subject Regularisation en
dc.title Solution of inverse problem - regularization via thermodynamical criterion en
dc.type Presentation en


Files in this item

This item appears in the following Collection(s)

Show simple item record