dc.contributor.author |
Raftery, James G.
|
|
dc.date.accessioned |
2016-11-30T06:01:40Z |
|
dc.date.available |
2016-11-30T06:01:40Z |
|
dc.date.issued |
2016 |
|
dc.description.abstract |
This paper provides a semantic analysis of admissible rules
and associated completeness conditions for arbitrary deductive systems,
using the framework of abstract algebraic logic. Algebraizability is not
assumed, so the meaning and signi cance of the principal notions vary
with the level of the Leibniz hierarchy at which they are presented. As
a case study of the resulting theory, the non-algebraizable fragments of
relevance logic are considered. |
en_ZA |
dc.description.department |
Mathematics and Applied Mathematics |
en_ZA |
dc.description.librarian |
hb2016 |
en_ZA |
dc.description.sponsorship |
This work is based on research supported in part by
the National Research Foundation of South Africa (UID 85407). |
en_ZA |
dc.description.uri |
https://www.dukeupress.edu/notre-dame-journal-of-formal-logic |
en_ZA |
dc.identifier.citation |
Raftery, JG 2016, 'Admissible rules and the Leibniz hierarchy', Notre Dame Journal of Formal Logic , vol. 57, no. 4, pp. 569-606. |
en_ZA |
dc.identifier.issn |
0029-4527 (print) |
|
dc.identifier.issn |
1939-0726 (online) |
|
dc.identifier.other |
10.1215/00294527-3671151 |
|
dc.identifier.uri |
http://hdl.handle.net/2263/58313 |
|
dc.language.iso |
en |
en_ZA |
dc.publisher |
Duke University Press |
en_ZA |
dc.rights |
© Duke University Press |
en_ZA |
dc.subject |
Deductive system |
en_ZA |
dc.subject |
Admissible rule |
en_ZA |
dc.subject |
Reduced matrix |
en_ZA |
dc.subject |
Structural completeness |
en_ZA |
dc.subject |
Leibniz hierarchy |
en_ZA |
dc.subject |
[Order] algebraizable logic |
en_ZA |
dc.subject |
BCIW |
en_ZA |
dc.title |
Admissible rules and the Leibniz hierarchy |
en_ZA |
dc.type |
Postprint Article |
en_ZA |