Admissible rules and the Leibniz hierarchy

Show simple item record

dc.contributor.author Raftery, James G.
dc.date.accessioned 2016-11-30T06:01:40Z
dc.date.available 2016-11-30T06:01:40Z
dc.date.issued 2016
dc.description.abstract This paper provides a semantic analysis of admissible rules and associated completeness conditions for arbitrary deductive systems, using the framework of abstract algebraic logic. Algebraizability is not assumed, so the meaning and signi cance of the principal notions vary with the level of the Leibniz hierarchy at which they are presented. As a case study of the resulting theory, the non-algebraizable fragments of relevance logic are considered. en_ZA
dc.description.department Mathematics and Applied Mathematics en_ZA
dc.description.librarian hb2016 en_ZA
dc.description.sponsorship This work is based on research supported in part by the National Research Foundation of South Africa (UID 85407). en_ZA
dc.description.uri https://www.dukeupress.edu/notre-dame-journal-of-formal-logic en_ZA
dc.identifier.citation Raftery, JG 2016, 'Admissible rules and the Leibniz hierarchy', Notre Dame Journal of Formal Logic , vol. 57, no. 4, pp. 569-606. en_ZA
dc.identifier.issn 0029-4527 (print)
dc.identifier.issn 1939-0726 (online)
dc.identifier.other 10.1215/00294527-3671151
dc.identifier.uri http://hdl.handle.net/2263/58313
dc.language.iso en en_ZA
dc.publisher Duke University Press en_ZA
dc.rights © Duke University Press en_ZA
dc.subject Deductive system en_ZA
dc.subject Admissible rule en_ZA
dc.subject Reduced matrix en_ZA
dc.subject Structural completeness en_ZA
dc.subject Leibniz hierarchy en_ZA
dc.subject [Order] algebraizable logic en_ZA
dc.subject BCIW en_ZA
dc.title Admissible rules and the Leibniz hierarchy en_ZA
dc.type Postprint Article en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record