Sibling curves and complex roots 1: looking back

Show simple item record

dc.contributor.author Harding, Ansie
dc.contributor.author Engelbrecht, Johann
dc.date.accessioned 2008-06-02T06:39:02Z
dc.date.available 2008-06-02T06:39:02Z
dc.date.issued 2007-01-07
dc.description.abstract This paper, the first of a two-part article, follows the trail in history of the development of a graphical representation of the complex roots of a function. Root calculation and root representation are traced through millennia, including the development of the notion of complex numbers and subsequent graphical representation thereof. The concepts of the Cartesian and Argand planes prove to be central to the theme. We specifically pause to look at efforts of representing complex roots of a function on the real plane, first, by superimposing the Argand plane onto the Cartesian plane, and secondly, by keeping the planes side by side and moving between the two, and thirdly, by taking the modulus of the function value and hence eliminating one dimension to enable drawing of the complex function as a surface in three dimensions. en
dc.format.extent 407310 bytes
dc.format.mimetype application/pdf
dc.identifier.citation Harding, A & Engelbrecht, J 2007, 'Sibling curves and complex roots 1: looking back', International Journal of Mathematical Education in Science and Technology, vol. 38, no. 7, pp. 963-973. [http://www.informaworld.com/smpp/title~content=t713736815~db=jour] en
dc.identifier.issn 1464-5211
dc.identifier.issn 0020-739X
dc.identifier.other 10.1080/00207390701564680
dc.identifier.uri http://hdl.handle.net/2263/5735
dc.language.iso en en
dc.publisher Taylor & Francis en
dc.rights Taylor & Francis. en
dc.subject Sibling curves en
dc.subject Complex roots en
dc.subject.lcsh Functional analysis en
dc.subject.lcsh Number theory en
dc.subject.lcsh Roots, Numerical en
dc.subject.lcsh Curves, Plane en
dc.title Sibling curves and complex roots 1: looking back en
dc.type Postprint Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record